
LEARNING AND INCENTIVES
IN COMPUTER SCIENCE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Okke Schrijvers
June 2017

c© Copyright by Okke Schrijvers 2017
All Rights Reserved

ii

Okke Schrijvers

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree
of Doctor of Philosophy.

(Tim Roughgarden) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree
of Doctor of Philosophy.

(Dan Boneh)

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree
of Doctor of Philosophy.

(Ashish Goel)

I certify that I have read this dissertation and that, in my opinion, it
is fully adequate in scope and quality as a dissertation for the degree
of Doctor of Philosophy.

(Nicolas Lambert)

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

In this thesis we look at topics in algorithmic game theory, with influences from
learning theory. We use tools and insights from game theory to look at areas in
computer science, such as machine learning and the bitcoin blockchain, that have been
developed incognizant of incentives for selfish behavior. Here we 1) show that there
are incentives to behave in a way that’s harmful for the system, 2) give mechanisms
where the incentives for the individual and group are aligned, and 3) measure how
harmful (having to account for) selfish behavior is. In particular we study the problem
of online prediction with expert advice, where we show that when experts are selfish
and care about their reputation, the design of incentive compatible algorithms is
tightly coupled to strictly proper scoring rules. We give algorithms that have good
regret guarantees, and we prove that it is not possible to match regret guarantees for
honest experts. For Bitcoin, we show that the way rewards are shared in mining pools
can lead to miners strategically hiding work to improve their payout. This holds true
even in the absence of outside options for miners, such as other pools or solo mining.
We give a novel reward sharing function that does not have perverse incentives, and
analyze its performance analytically and through simulations.

On the other hand we look at how data can be used in a variety of game theory
applications. We ask the questions 1) how can we use data to replace standard
informational assumptions in auction theory, 2) how much data do we need for good
results in this area, 3) how can we use data to learn about the utilities of agents when
we observe behavior, and finally (as misrecorded data may lead algorithms astray)
4) how can we find anomalies in a data set in an unsupervised manner? For the
first two questions we look at position auction environments where we give the first
computationally efficient algorithm for i.i.d. bidders with irregular value distributions,
that achieves revenue arbitrarily close to optimal using polynomial samples. Due to
the low sample complexity, our approach leads to a no-regret algorithm in the online
setting. To address the third question, we give a computationally efficient algorithm
that computes, given a correlated equilibrium (which may be a pure or mixed Nash
equilibrium), the set of utilities that are consistent with it. Finally, we give an
unsupervised anomaly detection algorithm that runs in a stream, and we show its
performance through experiments on real and synthetic data.

iv

Acknowledgments

I am very thankful for the many people who have helped and inspired me during the
last five years. First and foremost, Tim Roughgarden has been an incredible academic
advisor and co-author on many of the papers that have led to the chapters in this
thesis. He has given me the freedom to explore a diverse set of topics, while guiding
me in asking the right questions for each of them. Tim has had a profound impact
in how I conduct research, and how I communicate my work to others.

I’m also very fortunate to have had the opportunity to work with, and learn
from, all of my amazing co-authors. In alphabetic order they are: Dan Boneh, Joe
Bonneau, Sudipto Guha, Volodymyr Kuleshov, Mohammad Mahdian, Nina Mishra,
Tim Roughgarden, Gourav Roy, and Sergei Vassilvitskii.1 The diversity of their
expertise and approach to research has truly expanded my experience.

Beyond the work I did at Stanford over the past five years, I’ve had the good for-
tune to do summer internships at Google, Amazon and Facebook. Not only were these
great opportunities to broaden my horizon, the internships have led to publications
at KDD and ICML, and a job as core data scientist at Facebook after graduation.

Finally, you cannot finish a PhD unless you start a PhD. Bert Heesakkers planted
the seed to pursue a Master’s degree and eventually PhD. My professors at Tech-
nische Universiteit Eindhoven have been extremely generous in the time they spent
on coaching me through the application process and writing letters on my behalf.
Finally, I’m grateful for my friends and family, who have borne with me through this
entire process. I could not have done this without their support.

Okke Schrijvers

San Francisco
May 31, 2017

1This list includes co-authors from papers that I have not included in the thesis, but where
the majority of the work was written during my Ph.D. [Roughgarden and Schrijvers, 2016a], and
[Mahdian et al., 2015]. I’m also grateful to my co-authors of [Buchin et al., 2013], [Schrijvers and van
Wijk, 2013], and [Schrijvers et al., 2013] which were all published during my Ph.D. but for which the
majority of the work was done while I was a Master’s student at Technische Universiteit Eindhoven.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1
1.1 Research Goals . 3

1.1.1 Goal 1: Understanding Agents Through Data 3
1.1.2 Goal 2: Robustness to Incentives 5

1.2 Contributions of the Thesis . 6
1.2.1 Part I: Learning . 6
1.2.2 Part II: Incentives . 7

I Learning 9

2 Learning Optimal Auctions 10
2.1 Introduction . 10

2.1.1 Our Results . 11
2.1.2 Why Irregular Distributions Are Interesting 12
2.1.3 Why Irregular Distributions Are Hard 13
2.1.4 Related Work . 14

2.2 Preliminaries . 16
2.2.1 The Empirical CDF and the DKW Inequality 16
2.2.2 Optimal Auctions using the Revenue Curve 17
2.2.3 Notation . 20

2.3 Additive Loss in Revenue for Single-Item Auctions 21
2.3.1 The Empirical Myerson Auction 21
2.3.2 Additive Revenue Loss in Terms of Revenue Curves 23
2.3.3 Bounding the Error in the Revenue Curve 24

2.4 Matroid and Position Environments 30
2.4.1 Position Auctions . 31

vi

2.4.2 Matroid Environments . 31
2.5 No-Regret Algorithm . 32
2.6 Unbounded Distributions . 33
2.A Reduced Information Model . 36

2.A.1 Lower Bound . 36

3 Learning Utilities in Succinct Games 40
3.1 Introduction . 40

3.1.1 Our Contributions. 41
3.1.2 Related Work . 42

3.2 Preliminaries . 43
3.3 Succinct Games . 44

3.3.1 Succinct Representations of Equilibria 45
3.3.2 What it Means to Rationalize Equilibria 45
3.3.3 Non-Degeneracy Conditions 46
3.3.4 The Inverse Game Theory Problem 46

3.4 Learning Utilities in Succinct Games 47
3.4.1 General Linear Succinct Games 47
3.4.2 Inferring Utilities in Popular Succinct Sames 50

3.5 Learning the Structure of Succinct Games 53

4 Anomaly Detection in a Stream 56
4.1 Introduction . 57
4.2 Defining Anomalies . 61
4.3 Forest Maintenance on a Stream . 65

4.3.1 Deletion of Points . 67
4.3.2 Insertion of Points . 68

4.4 Isolation Forest and Other Related Work 70
4.4.1 The Isolation Forest Algorithm 70
4.4.2 Other Related Work . 72

4.5 Experiments . 72
4.5.1 Synthetic Data . 73
4.5.2 Real Life Data: NYC Taxicabs 74

4.6 Conclusions and Future Work . 76
4.A Proof of Theorem 4.2 . 78

II Incentives 80

5 Online Prediction with Selfish Experts 81
5.1 Introduction . 81

vii

5.1.1 Our Results . 85
5.1.2 Related Work . 86
5.1.3 Organization . 87

5.2 Preliminaries and Model . 88
5.2.1 Standard Model . 88
5.2.2 Selfish Model . 89
5.2.3 Proper Scoring Rules . 90
5.2.4 Online Learning with Quadratic Losses 91

5.3 Deterministic Algorithms for Selfish Experts 92
5.3.1 Deterministic Online Prediction using a Spherical Rule 93
5.3.2 True Loss of the Non-IC Standard Rule 94

5.4 The Cost of Selfish Experts for IC algorithms 94
5.4.1 Symmetric Strictly Proper Scoring Rules 96
5.4.2 Beyond Symmetric Strictly Proper Scoring Rules 98

5.5 The Cost of Selfish Experts for Non-IC Algorithms 100
5.6 Randomized Algorithms: Upper and Lower Bounds 103

5.6.1 Impossibility of Vanishing Regret 103
5.6.2 An IC Randomized Algorithm for Selfish Experts 104

5.7 Simulations . 105
5.7.1 Data-Generating Processes . 105
5.7.2 Results . 106

5.A Omitted Proofs . 109
5.A.1 Proof of Theorem 5.12 . 109
5.A.2 Proof of Lemma 5.20 . 111
5.A.3 Proof of Lemma 5.25 . 113
5.A.4 Proof of Theorem 5.30 . 117
5.A.5 Proof of Theorem 5.33 . 118

5.B Selecting a Strictly Proper Scoring Rule 120

6 Incentives in Bitcoin Mining Pools 122
6.1 Introduction . 122
6.2 Preliminaries . 124

6.2.1 Reward Functions and History Transcripts 124
6.2.2 Miner Strategy . 125
6.2.3 Reward Function Desiderata 126
6.2.4 Common examples . 127
6.2.5 Ensuring Steady Rewards . 127

6.3 Incentive Compatibility . 128
6.4 Incentive Compatibility of Existing Methods 130

6.4.1 Proportional Reward Function 130

viii

6.4.2 Pay-Per-Share Reward Function 131
6.5 A New IC Reward Function . 132

6.5.1 The IC Reward Function . 132
6.5.2 Providing a Steady Payment Stream 134

6.6 Incentive Compatibility of PPLNS . 135
6.6.1 The PPLNS Reward Function 135
6.6.2 Incentive Compatibility of PPLNS 136

6.7 Simulations . 137
6.8 Conclusions & Open Problems . 139
6.A Omitted Proofs . 141

6.A.1 Proof of Lemma 6.4 . 141
6.A.2 Proof of Lemma 6.6 . 142

6.B Incentive Compatibility with Preemptions 143
6.B.1 Proportional . 144

6.C Multiple Pools . 145

ix

List of Tables

2.1 Overview of notation for revenue curves. 20

4.1 Comparison of IF and RRCF . 74
4.2 Segment-Level Metrics and Precision@K 74

5.1 Comparison of lower bound results with simulation. 107

x

List of Figures

2.1 A revenue curve and the virtual value function. 17
2.2 Revenue curve R falls between curves R̂min and R̂max. 25
2.3 The effect of ironing the estimated intervals. 27
2.4 The revenue curve of an unbounded, irregular distribution. 35
2.5 Lower bound example for optimal auctions using samples from F(2). . 37

4.1 Decremental maintenance of trees. 59
4.2 A correspondence of trees . 62
4.3 IF and CoDisp on the in input in Example 4.17. 71
4.4 Results for synthetic time series data. 73
4.5 NYC taxi data and CoDisp(). 76

5.1 The time-averaged regret for the HMM data-generating process. . . . 107
5.2 Regret for the greedy lower bound instance. 108
5.3 Comparison of weight-update rules. 120

6.1 Simulation results for our new incentive-compatible reward function. . 138
6.2 Comparison of the new incentive compatible scheme to PPLNS. . . . 139

xi

Chapter 1

Introduction

A modern individual spends much of their time interacting with and through online
computer platforms. We communicate with each other on platforms like Facebook
and iMessage, search online using services like Google, ask and answer questions on
websites like Stack Overflow and Quora, and order a ride on Uber or Lyft. What
makes these systems complex, is that a user does not merely interact with the plat-
form, but also with the others users of the platform: a social network or a ride-sharing
service only provides value to the user through interactions with other users.

Consequently, the experience of users is dependent on both the design of the
platform, as well as the interaction with other users. This raises an important issue:
how can a platform ensure that the interaction with other users will be beneficial to
all parties involved? A priori it is not certain that users have the same goals when
using a platform: passengers on a ridesharing service seek to minimize the cost for a
ride, while a driver on the same platform seeks to maximize their profit. Similarly,
users on a Q&A website like Stack Overflow may be very interested to get detailed
help with their questions, but may not want to exert effort to answer other people’s
questions. A user who has agency in their actions is called an agent, and a common
way to describe the fact that an agent’s personal goals may not align with the goals
of other agents is self-interest. Informally we can then pose the question: How can
we design platforms that are robust to self-interested behavior of agents?

To answer that question, we need some way to reason about how agents interact
with each other. The field of game theory provides a model for this. Originally devel-
oped by von Neumann and Morgenstern [1944] and Nash [1951], agents are thought
of as players in a game, where each agent has several actions she can undertake.1 The
joint profile of actions of the agents leads to a common outcome, and each participant
derives some (potentially negative) utility from this outcome. For example, a game

1In 1994 Reinhard Selten, John Nash, and John Harsanyi received the Nobel Memorial Prize in
Economics for their foundational work on the theory of non-cooperative games.

1

CHAPTER 1. INTRODUCTION 2

could be rock-paper-scissors where there are two players, each with three possible
actions. An outcome is the decision by both players, where the player who wins has
utility of 1, and the player that loses a utility of −1. Game theory isn’t limited to
literal games: for example one could also model morning traffic as a game. Each
player decides which route to take in the morning, the joint outcome is which cars are
on which roads, and the utilities for each player are inversely related to the time it
takes them to reach their destination. As is common in the field, we refer to all such
interactions as games. In these situations it is clear that agents seek to improve their
own utility, e.g. their own travel time, rather than some collective goal, e.g. average
travel time for all road users.

In many cases, an agent has some private information that influences the utility
that she has for outcomes in a game, for example, a bidder in an auction may have
a maximum willingness-to-pay for an item, and a buyer on an e-commerce platform
may have an opinion on the service of a seller on that platform. Soliciting this
information is subject to the same notion of self-interest as before. An agent may not
simply supply the information truthfully, but instead report whatever information
maximizes her utility. The study of how to design algorithms that operate on private
information held by agents is known as mechanism design.2 Mechanism design gives
us insight in how we should design systems that are robust to self-interested behavior
of agents.

This thesis deals with topics in game theory and mechanism design, but with a
definite computer science perspective. In the late 90s, with the advent of the internet,
computer scientists became interested in connections between computer science and
game theory and started working on a field that is now known as algorithmic game
theory. What sets this field apart from traditional game theory and mechanism de-
sign is that it takes computational efficiency as a hard design constraint: a theory or
algorithm that cannot be run in reasonable time on a computer holds little value in
practice. In this thesis, all results are computationally efficient, and computational
efficiency is of particular importance in Chapters 2, 3 and 4. On the other hand, algo-
rithmic game theory uses insights from game theory to analyze and improve computer
platforms that have previously been incognizant of incentive problems. This is the
primary motivation in Chapters 5 and 6.

What makes online platforms so interesting, and what guides the research questions in
this thesis, is another aspect that online platforms provide: the collection of relevant
data. Data can be useful because it provides insight in what agents want, and thus
it gives a designer the opportunity to optimize for different objectives. At the same
time, we should be aware that data may come from agents, and therefore we may

2In 2007, Leonid Hurwicz, Eric Maskin, and Roger Myerson received the Nobel Memorial Prize
in Economics for their foundational work on Mechanism Design.

CHAPTER 1. INTRODUCTION 3

need to design the way in which we elicit information. This motivates looking at the
questions: How can we use data to learn about participants? and How can we elicit
data truthfully?

There are many ways in which data is used to get insights, from exploratory data
analysis to deep learning approaches. In this thesis we aim to give provable guarantees
for algorithms that rely on data, so we mostly rely on techniques from learning theory.

1.1 Research Goals

The questions of how to use data to understand agents, and how to design systems
that are robust to self-interested behavior are broad enough to entertain the academic
community for the decades to come. We next focus on the specific goals that this
thesis aims to achieve.

1.1.1 Goal 1: Understanding Agents Through Data

In this thesis we seek to use data in such a way that we can prove formal guarantees of
the algorithms that use data. While there is much value in applied machine learning
and exploratory data science, we do not focus on these areas in the present work.
Instead we seek to develop tools that can be used across a variety of application areas
and be able to answer questions like: “what can we say about unobserved utilities
of agents based on observations of behavior?” and “what is the smallest amount of
data we need for our algorithm to do as well as an algorithm that knows with perfect
precision which distribution the data came from?” This means that we mostly use
tools and insights from learning theory.

When agents have private information, it is fairly common in economics to assume
that this private information comes from some underlying distribution which is known
to all participants. One can then design mechanisms that take this distribution as an
input or do equilibrium analysis based on the assumption that all participants know
the distribution that other participants’ types are drawn from. One reason why this
may be a reasonable assumption is that this distribution may be approximated by an
empirical distribution of past observations. However, it’s not clear that guarantees
that work well for the true distribution carry over without loss (or with minimal
loss) to empirical distributions. In fact, in general this is not the case, as we give
example of in Chapter 2. This motivates explicitly modeling the information about
the underlying distribution in terms of samples (data) from that distribution:

Question 1. For algorithms that rely on knowledge of a distribution F , can we replace
knowledge of F with access to samples from F?

CHAPTER 1. INTRODUCTION 4

In the limit we expect the answer to the question to be affirmative: indeed if
we have an infinite number of samples from a distribution, the empirical cumulative
distribution converges to the actual cumulative distribution almost surely. Therefore,
it is informative to not just ask whether it’s possible to replace knowledge of a dis-
tribution with access to samples, but also how many samples are needed for good
results:

Question 2. How many samples from F are necessary and sufficient to do (almost)
as well as knowing F directly (with high probability)?

Answers to this question can give us insight into how useful this technique may be
in practice (if an exponential number of samples are necessary, we could only use the
approach in small settings), but it can also guide us to determine how much data is
needed, and at which stage more data adds little in terms of performance guarantees.

Another question lies more fundamentally at the assumptions of where we get our
input from to begin with. Taking an online platform as an example, we can typically
directly observe what a user does, and how they are interacting with the platform
and other users, but we cannot directly observe why they chose these actions, and
what their utility from these actions was.

Question 3. Can we learn the utilities of players in a game if we can only observe
behavior?

In both of the questions above, more data is generally better. However, in practical
applications, with more data, we also run the risk that some of the data may be
incorrect. For example, agents may have acted irrational at some point in time, e.g.
to protect their privacy, or there may have been data corruption while recording
data. The need to remove anomalous data exists regardless of the source of data,
so we phrase the problem generally, without limiting ourselves to applications where
incentives play an important role.

Question 4. Given a data set, can we determine in an unsupervised manner, which
(if any) elements may be anomalies?

It may be difficult or impossible to prove theoretical guarantees on the effectiveness
of anomaly detection without making strong assumptions on the data generating
process. The algorithms that are used in practice lack these guarantees, but still seem
to give good results. We therefore seek to evaluate the performance of an anomaly
detection algorithm based on performance on real data, while at the same time we
prove structural properties of the algorithm and data structure to give insight into
why it may perform well.

Note that all of the questions above could also be phrased in terms of robustness.
Algorithms whose guarantees break down when we only have access to an empir-
ical input distribution are not very robust, but ones that provide guarantees with

CHAPTER 1. INTRODUCTION 5

high probability based on samples are. Being able to test if agents are playing an
equilibrium, even if we don’t know their utilities, can validate or reject rationality
hypotheses. This is robustness to modeling assumptions. Finally, being able to iden-
tify, in an unsupervised way, which inputs are likely to be anomalies, can help us with
algorithms that are more robust to outliers.

1.1.2 Goal 2: Robustness to Incentives

A different sense of robustness, is robustness with respect to the self-interested be-
havior of agents. In this part of the thesis we ask the question: which applications in
computer science present incentives for the participants, but lack an analysis of how
these incentives influence their behavior? As stated before, it is not obvious that a
user will always act in accord with what’s best for the platform as a whole, but rather
is motivated by the value they get out of a system.

The common approach to algorithm design is to assume that the input is given,
and that the goal of the algorithm designer is simply to compute an output that
satisfies the purpose of the algorithm, e.g. an algorithm to find the highest value in
a list, scans through the list and returns the highest value it has seen. However, if
the input comes from agents, this approach may break down. Imagine we’re trying
to give free concert tickets to whoever would value them the most. If we were to ask
a group of people to report how much they would value the tickets, everyone could
truthfully report their true value for them (assuming they know this). However, if an
agent wants these tickets, they might be inclined to name a higher number than their
true value, to improve their chances of naming the highest number and thus getting
the tickets. This motivates the following question:

Question 5. For algorithms that operate on data given by agents, do there exist
incentives to misreport the data?

In the example given above, the answer is clearly affirmative. In fact, since people
are unconstrained in their reports, this algorithm will result in a game of ‘name the
highest number,’ with the recipient of the tickets unrelated to whoever would value
them the most. Identifying algorithms that are subject to being gamed is useful in its
own right, but ideally we’d still want to run some (other) algorithm that calculates
the desired outcome:

Question 6. For algorithms where incentives exist for data sources, are there alter-
native algorithms where agents are incentivized to report honestly?

In the case of giving away concert tickets, one could for example ask participants to
list their value in dollars, give the tickets to the person who names the highest dollar

CHAPTER 1. INTRODUCTION 6

amount, and charge them the second highest amount.3 It seems like this solution is
even better than what we started out with: not only do we give the tickets to the
person who values them most, but we might make some money in the process. There
are indeed many application areas where auctions are very successful, but there are
also areas where there are moral or ethical objections to this. Consider for example
the question of who should receive a donated kidney, or how medical residents should
be assigned to hospitals. We don’t want this to always go to the highest bidder. This
motivates the question:

Question 7. Are algorithms that incentivize honest reporting by agents as powerful
as algorithms that have direct access to the data? I.e. is the presence of agents
detrimental to the performance of a system?

In the case of assigning an item to the person who values it the most, one can
show that it’s necessary to include a payment of some sort, in order to incentivize
truthful reporting. In other cases we may have to resort to optimizing some objective
function approximately rather than exactly. The performance metric in this question
is going to differ depending on the application, but getting insight into the cost of
designing systems to account for self-interested behavior can help in guiding what a
system lets its users do.

We have motivated Questions 5-7 with an example from auction theory. But there
are potentially many applications in computer science where the incentive question
has simply not been considered yet. In this thesis we look at two such applications
and provide answers to the three questions for both of them.

1.2 Contributions of the Thesis

This thesis is divided in two parts. In the first part we address the goal of under-
standing agents through data by looking at Questions 1-4. The second part of the
thesis is about robustness to incentives, and we answer Questions 5-7 for two different
applications. The chapters in this thesis can be read independently of each other.

1.2.1 Part I: Learning

Ad auctions are one of the predominant generators of revenue for internet companies
like Google and Facebook. The economic theory of revenue-optimal auctions is has

3This is known in the auction literature as the second-price auction. Intuitively no person has a
reason to misreport because they have to pay for taking an item that could have gone to someone
else, but they do not directly influence the amount they pay. For a more detailed treatment, see e.g.
[Roughgarden, 2016].

CHAPTER 1. INTRODUCTION 7

been well understood since the 80s, but it typically relies on strong assumptions, such
as access to the precise distribution F of ‘willingness-to-pay’ of bidders. In chapter 2,
we relax this assumption, and propose an auction format that uses n samples from F
(which we think of as past auction data) to get a (1− ε) fraction of the revenue with
high probability, for i.i.d. bidders in matroid and position auctions. We give sample
complexity bounds that show the relationship between the amount of data n and the
approximation factor ε. Chapter 2 addresses Questions 1 and 2.

Auctions are an application area of game theory where the seller and bidders have
very natural objectives. In other areas, this is less clear. Users of ride-share services
may have different willingness-to-pay when demand for rides exceeds the supply of
drivers, and a fanpage on social media may time their post to engagement in terms
of likes, shares, comments or exposure. In both of these situations, the preferences
of people are not known a priori, but insight in their preferences may improve the
economic efficiency of the systems. In Chapter 3 we address Question 3 and describe
a method to uncover the utility structure of players in games, based on observed
play. On a technical level we show that succinct games, where players are playing a
correlated equilibrium, can be rationalized in polynomial time. We also show that
when the structure of the played game is not known, the problem becomes NP-hard.

These methods, for optimal auctions and rationalizing games, only have provable
guarantees when the data comes from processes that agree with the assumptions that
are made, and they tend to be more accurate with more available data. However,
in the real world, as the amount of data grows, the probability that anomalous data
enters our data set also increases. So in Chapter 4 we address Question 4 and give
an unsupervised approach for outlier detection that works well for both high and
low-dimensional data. We give streaming algorithms for maintaining the relevant
data structure and doing anomaly detection, and our method compares favorably to
existing methods.

1.2.2 Part II: Incentives

In other cases, we do not need data to understand what drives human behavior, as it
can be directly derived from the kind of incentives that a computer system provides.
One such example is in machine learning: prediction with expert advice is a classical
problem in this area where the credibility or influence of an expert depends on her
past predictions. In the real world, experts care about the influence they wield and
so they may report untruthfully when so incentivized. Look no further than political
pundits who are rewarded for extreme rather than nuanced claims, to see this behavior
in action. False reports can impede an aggregator’s ability to learn from experts. In
Chapter 5 we address Questions 5-7 for the case of learning from expert advice:
we quantify how harmful selfish behavior of experts can be, and give an algorithm

CHAPTER 1. INTRODUCTION 8

where experts are always incentivized to report truthfully. We also prove a separation
between the best possible regret when experts are selfish and when they are honest
(i.e. do not respond to incentives and just reveal private information) pointing at the
harm of selfish behavior.

Another system where participants actions are driven by incentives, this time
quite explicitly, is Bitcoin mining. To have a decentralized currency, Bitcoin pro-
cesses transactions by a consensus protocol that relies on solving a cryptographic
puzzle. This consumes computational resources, and so participants are compensated
by monetary rewards. We show in Chapter 6 that even in very simple settings—only
a single mining pool, without outside options—there are incentives to delay reporting
of solutions to the puzzle, answering Question 5 for Bitcoin mining. Even in the case
of a single pool this means computational resources are wasted, but when the pool
is a part of a larger system the same incentives still apply and now all people in the
pool run the risk of losing out on payments. We propose a new reward function that
resolves this incentive problem (addressing Question 6), and show that it has nice
properties for deployment in practice (Question 7).

At the end of the day, building a robust computer system is a complicated task.
From rewarding desired behavior and disincentivizing unwanted behavior, to utiliz-
ing usage data to understand and improve the way your system works, a modern
computer scientist needs a large toolset to tackle these problems. This thesis ad-
dresses some of these issues, and as more and more interactions move to the digital
space, we are unlikely to run out of new problems to tackle soon.

Part I

Learning

9

Chapter 2

Learning Optimal Auctions

This chapter presents the first polynomial-time algorithm for position and matroid
auction environments that learns, from samples from an unknown bounded valuation
distribution, an auction with expected revenue arbitrarily close to the maximum
possible.1 In contrast to most previous work, our results apply to arbitrary (not
necessarily regular) distributions and the strongest possible benchmark, the Myerson-
optimal auction. Learning a near-optimal auction for an irregular distribution is
technically challenging because it requires learning the appropriate “ironed intervals,”
a delicate global property of the distribution.

2.1 Introduction

The traditional economic approach to revenue-maximizing auction design, exemplified
by Myerson [1981], posits a known prior distribution over what bidders are willing to
pay, and then solves for the auction that maximizes the seller’s expected revenue with
respect to this distribution. Recently, there has been an explosion of work in computer
science that strives to make the classical theory more “data-driven,” replacing the
assumption of a known prior distribution with that of access to relevant data, in the
form of samples from an unknown distribution. In this paper, we study the problem
of learning a near-optimal auction from samples, adopting the formalism of Cole and
Roughgarden [2014]. The idea of the model, inspired by PAC-learning [Valiant, 1984],
is to parameterize through samples the “amount of knowledge” that the seller has
about bidders’ valuation distributions.

We consider single-parameter settings, where each of n bidders has a private val-
uation (i.e., willingness to pay) for “winning” and valuation 0 for “losing.” Feasible
outcomes correspond to subsets of bidders that can simultaneously win; the feasible

1The chapter is based on work presented at EC’16 [Roughgarden and Schrijvers, 2016b]

10

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 11

subsets are known in advance.2 We assume that bidders’ valuations are drawn i.i.d.
from a distribution F that is unknown to the seller. However, we assume that the seller
has access to m i.i.d. samples from the distribution F — for example, bids that were
observed in comparable auctions in the past. The goal is to design a polynomial-time
algorithm A(v1, . . . , vm), mapping samples vi ∼ F to truthful auctions, such that, for
every distribution F , the expected revenue is at least 1−ε times the optimal expected
revenue.3 The sample complexity of achieving a given approximation factor 1 − ε is
then the minimum number of samples m such that there exists a learning algorithm
A with the desired approximation. This model serves as a potential “sweet spot”
between worst-case and average-case analysis, inheriting much of the robustness of
the worst-case model (since we demand guarantees for every underlying distribution
F) while allowing very good approximation guarantees.

2.1.1 Our Results

We give polynomial-time algorithms for learning a (1− ε)-approximate auction from
samples, for arbitrary matroid (or position) auction environments and valuation dis-
tributions that satisfy minimal assumptions.

For example, for valuation distributions with support in [0, H], we provide a
polynomial-time algorithm that, given a matroid environment with n bidders and
m i.i.d. samples from an arbitrary distribution F , with probability 1 − δ, approx-
imates the maximum-possible expected revenue up to an additive loss of at most

3n
√

ln 2δ−1

2m
·H. Thus for every ε > 0, the additive loss is at most ε (with probability

at least 1 − δ) provided m = Ω(n2H2ε−2 log δ−1). Whenever the optimal expected
revenue is bounded away from 0, this result immediately implies a comparable sample
complexity bound for learning a (1 − ε)-(multiplicative) approximate auction. Our
main result can also be used to give a no-regret guarantee in a stochastic learning
setting (Section 2.5).

A lower bound of Cesa-Bianchi et al. [2015] implies that, already for simpler
settings, the quadratic dependence of our sample complexity bound on 1

ε
is optimal.

A lower bound of Huang et al. [2015] implies that, already with a single bidder, the
sample complexity must depend polynomially on H. Whether or not the sample

2For example, in auction with k copies of an item, where each bidder only wants one copy, feasible
outcomes correspond to subsets of at most k bidders.

3By a truthful auction, we mean one in which truthful bidding is a dominant strategy for every
bidder. The restriction to dominant strategies is natural given our assumption of an unknown
distribution. Given this, the restriction to truthful auctions is without loss of generality (by the
“Revelation Principle,” see e.g. [Nisan, 2007]). Also, for the single-parameter problems that we
study, there is always an optimal auction in which all bidders have dominant strategies [Myerson,
1981].

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 12

complexity needs to depend on n is an interesting open question.
Our technical approach is based on a “switching trick” (Proposition 2.3) and we

believe it will lead to further applications. A key idea is to express the difference in
expected revenue between an optimal and a learned auction in a matroid or position
environment purely in terms of a difference in area under the true and estimated
revenue curves. This “global” analysis avoids having to compare explicitly the true
and estimated virtual valuations or the optimal and learned allocation rules. With this
approach, there is clear motivation behind each of the steps of the learning algorithm,
and the error analysis, while non-trivial, remains tractable in settings more general
than those studied in most previous works.

The assumption of bounded valuations is not necessary for our results to hold.
More generally, the only assumption required is that the optimal auction does not
obtain a constant fraction of its expected revenue from valuation profiles with at least
one extremely high-valued bidder (with valuation bigger than a parameter H). This
assumption is trivially satisfied by any distribution with support in [0, H], and is also
satisfied (for a suitable H) by many (irregular) distributions with infinite support.
Some assumption of this type is necessary to preclude pathological distributions that
are impossible for any algorithm to learn.4

2.1.2 Why Irregular Distributions Are Interesting

A majority of the literature on approximation guarantees for revenue maximization
(via learning algorithms or otherwise) restricts attention to “regular” valuation dis-
tributions or subclasses thereof; see related work below for examples and exceptions.
Formally, a distribution F with density f is regular if

ϕ(v) = v − 1− F (v)

f(v)
(2.1)

is a nondecreasing function of v. ϕ is also called the virtual valuation function.
Intuitively, regularity is a logconcavity-type assumption that provides control over
the tail of the distribution. While many important distributions are regular, plenty
of natural distributions are not. For example, Sivan and Syrgkanis [2013] point out
that mixtures of distributions (even of uniform distributions) tend to be irregular,
and yet are obviously prevalent in the real world.

4To appreciate this issue, consider a single-bidder problem and all distributions that take on
a value M2 with probability 1

M and 0 with probability 1 − 1
M . The optimal auction for such a

distribution earns expected revenue at least M . It is not difficult to prove that, for every m, there is
no way to use m samples to achieve near-optimal revenue for every such distribution — for sufficiently
large M , all m samples are 0 w.h.p. and the algorithm has to resort to an uneducated guess for M .

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 13

2.1.3 Why Irregular Distributions Are Hard

To understand why irregular distributions are so much more technically challenging
than regular distributions, we need to review some classical optimal auction the-
ory. We can illustrate the important points already in single-item auctions. Myerson
[1981] proved that, for every regular distribution F , the optimal auction is simply a
second-price auction supplemented with a reserve price of ϕ−1(0), where ϕ denotes
the virtual valuation function in (2.1). (The winner, if any, pays the higher of the
reserve price and the second-highest bid.) Thus, learning the optimal auction reduces
to learning the optimal reserve price, a single statistic of the unknown distribution.
And indeed, for an unknown regular distribution F , there is a polynomial-time learn-
ing algorithm that needs only poly(1

ε
) samples to compute a (1 − ε)-approximate

auction [Dhangwatnotai et al., 2010, Huang et al., 2015].
The technical challenge of irregular distributions is the need to iron. When the

virtual valuation function ϕ of the distribution F is not nondecreasing, Myerson
[1981] gave a recipe for transforming ϕ into a nondecreasing “ironed” virtual valuation
function ϕ such that the optimal single-item auction awards the item to the bidder
with the highest positive ironed virtual valuation (if any), breaking ties randomly
(or lexicographically). Intuitively, this ironing procedure identifies intervals of non-
monotonicity in ϕ and changes the value of the function to be constant on each of
these intervals. (See also below and the exposition by Hartline [2014].)

The point is that the appropriate ironing intervals of a distribution are a global
property of the distribution and its (unironed) virtual valuation function. Estimating
the virtual valuation function at a single point — all that is needed in the regular
case — would appear much easier than estimating the right intervals to iron in the
irregular case.

We present two examples to drive this point home. The first, which is standard,
shows that foregoing all ironing can lead to a constant-factor loss in expected revenue,
even in single-item auctions. (Reserve prices are still worse in matroid environments,
see Devanur et al. [2014].) The second example shows that tiny mistakes in the choice
of ironing intervals can lead to a large loss of expected revenue.

Example 2.1 (Ironing Is Necessary for Near-Optimal Revenue). The distribution is
as follows: with probability 1/H the value is H (for a large H) and it is 1 otherwise.
The optimal auction irons the interval [1, H) for expected revenue of 2− 1

n
[Hartline,

2014], which approaches 2 with many bidders n. Auctions that do not implicitly or
explicitly iron obtain expected revenue only 1.

Example 2.2 (Small Mistakes Matter). Let F be 5 with probability 1/10 and 1 oth-
erwise, and consider a single-item auction with 10 bidders. The optimal auction irons
the interval [1, 5) and has no reserve price. If there are at least two bidders with value
5 one of them will get the item at price 5; if all bidders have value 1, one of them

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 14

will receive it at price 1. If there is exactly one bidder with value 5, then her price is
1
10
· 1 + 9

10
· 5 = 46

10
.

Now consider an algorithm that slightly overestimated the end of the ironing in-
terval to be [1, 5 + ε) with ε > 0. (Imagine F actually has small but non-zero density
above 5, so that this mistake could conceivably occur.) Now all bids always fall in the
ironing interval and therefore the item is always awarded to one of the players at price
1. Not only do we lose revenue when there is exactly one high bidder, but additionally
we lose revenue for auctions with at least two bidders with value 5. This auction has
even worse revenue than a Vickrey (second-price) auction, so the attempt to iron did
more harm than good.

Now consider the same setting as Example 2.2, with the exception that we slightly
underestimate the ironing interval as [1, 5−ε), instead of overestimating. We still lose
some revenue compared to the optimal ironing interval —namely when there is one
high bidder, she pays 46

50
− 9

10
ε instead of 46

50
— but the revenue is much closer to optimal

than when the end point of the ironing interval was too high. This phenomenon, that
underestimation is better than overestimation, is true more generally. Our learning
algorithm deliberately reports ironing intervals (and a reserve price) that are slightly
lower than the data would suggest, to guarantee that with high probability the start
and end points of ironing intervals do not exceed the optimal such points.

2.1.4 Related Work

Elkind [2007] gives a polynomial-time learning algorithm for the restricted case of
single-item auctions with discrete distributions with known finite supports but with
unknown probabilities. Learning is done using an oracle that compares the expected
revenue of pairs of auctions, and O(n2K2) oracle calls suffice to determine the optimal
auction (where n is the number of bidders and K is the support size of the distribu-
tions). Elkind [2007] notes that such oracle calls can be implemented approximately
by sampling (with high probability), but no specific sample complexity bounds are
stated.

Cole and Roughgarden [2014] also give a polynomial-time algorithm for learning
a (1 − ε)-approximate auction for single-item auctions with non-identical bidders,
under incomparable assumptions to [Elkind, 2007]: valuation distributions that can be
unbounded but must be regular. It is necessary and sufficient to have m = poly(n, 1

ε
)

samples, however in the analysis by Cole and Roughgarden [2014] the exponent in the
upper bound is large (currently, 10). These sample complexity results were recently
generalized and improved dramatically by Devanur et al. [2016], although though at
the time of publication, all of their results still require the valuation distributions to
be regular.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 15

Meanwhile, Morgenstern and Roughgarden [2015] gave general sample complex-
ity upper bounds which are similar to ours and cover all single-parameter settings
(matroid and otherwise), although their (brute-force) learning algorithms are not
computationally efficient.

After this present work was published, Gonczarowski and Nisan [2017] used an
ε-net in value space to give a computationally efficient algorithm with polynomial
sample complexity for most single-parameter environments (including non-i.i.d., non-
regular environments), and Devanur et al. [2016] extended their own work to handle
some non-regular settings as well.

The papers of Cesa-Bianchi et al. [2015] and Medina and Mohri [2014] give al-
gorithms for learning the optimal reserve-price-based single-item auction. Recall
from Example 2.1 that, with irregular distributions, the expected revenue of the
best reserve-price-based auction might be only half that of an optimal auction.

Dughmi et al. [2014] proved negative results (exponential sample complexity) for
learning near-optimal mechanisms in multi-parameter settings that are much more
complex than the single-parameter settings studied here. The paper also contains
positive results for restricted classes of mechanisms.

Huang et al. [2015] give optimal sample complexity bounds for the special case of a
single bidder under several different distributional assumptions, including for the case
of bounded irregular distributions where they need O(H · ε−2 · log(Hε−1)) samples.

Our learning algorithm is in the spirit of the Random Sampling Empirical Myerson
mechanism [Devanur et al., 2014] and its precursors, though different in a number of
details. Previous work used the approach to construct a revenue curve from bidders
in an auction and prove constant-factor approximations in prior-free settings. The
present work seeks (1− ε)-approximations in settings with an unknown distribution.

For previously studied models about revenue-maximization with an unknown dis-
tribution, which differ in various respects from the model of Cole and Roughgar-
den [2014], see Babaioff et al. [2011], Cesa-Bianchi et al. [2015], and Kleinberg and
Leighton [2003]. For other ways to parameterize partial knowledge about valuations,
see e.g. [Azar et al., 2013] and [Chiesa et al., 2012]. For other ways to parameterize a
distribution by its “degree of irregularity” see [Hartline, 2014], [Huang et al., 2015],
and [Sivan and Syrgkanis, 2013]. For other uses of samples in auction design that
differ from ours, see [Fu et al., 2014], who use samples to extend the Crémer-McLean
theorem [Crémer and McLean, 1985] to partially known valuation distributions, and
[Chawla et al., 2014], which is discussed further below. For asymptotic optimality
results in various symmetric settings (single-item auctions, digital goods), which iden-
tify conditions under which the expected revenue of some auction of interest (e.g.,
second-price) approaches the optimal with an increasing number of i.i.d. bidders, see
[Neeman, 2003], [Segal, 2003], [Baliga and Vohra, 2003], and [Goldberg et al., 2006].

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 16

For applications of learning theory concepts to prior-free auction design in unlimited-
supply settings, see [Balcan et al., 2008].

Finally, the technical issue of ironing from samples comes up also in [Ha and
Hartline, 2013] and [Chawla et al., 2014], in models incomparable to the one studied
here. The setting of [Ha and Hartline, 2013] is constant-factor approximation guar-
antees for prior-free revenue maximization, where the goal is input-by-input rather
than distribution-by-distribution guarantees. Chawla et al. [2014] study non-truthful
auctions, where bidders’ true valuations need to be inferred from equilibrium bids,
and aim to learn the optimal “rank-based auction,” which can have expected rev-
enue a constant factor less than that of an optimal auction. Our goal of obtaining a
(1− ε)-approximation of the maximum revenue achieved by any auction is impossible
in both of these settings.

Summarizing, this chapter details the first polynomial-time algorithm for position
and matroid environments that learns, from samples from an unknown irregular valu-
ation distribution, an auction with expected revenue arbitrarily close to the maximum
possible.

2.2 Preliminaries

2.2.1 The Empirical CDF and the DKW Inequality

Let X = {Xi}mi=1 be a set of m samples, and let X(i) be the ith order statistic. We
use the standard notion of the empirical cumulative distribution function (empirical

CDF): F̂m(v) = 1
m
· |{Xi : Xi ≤ v}|. The empirical CDF is an estimator for the quan-

tile of a given value. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [Dvoretzky
et al., 1956, Massart, 1990] states that the difference between the empirical CDF and

the actual CDF decreases quickly in the number of samples. Let εm,δ =
√

ln 2δ−1

2m
, then

Pr
[
supv∈R

∣∣∣F (v)− F̂m(v)
∣∣∣ ≤ εm,δ

]
≥ 1− δ. So the largest error in the empirical CDF

shrinks in O(m−1/2). For our purposes we will not need the CDF F , but rather its

inverse F−1. Define F̂−1m (x) as X(max(1,dx·me)) for x ∈ [0, 1]. (For convenience, define

F̂−1m (x) as 0 if x < 0 and H if x > 1.) By definition, for all v ∈ [0, H]:

F̂−1m

(
F̂m(v)

)
≤ v ≤ F̂−1m

(
F̂m(v) +

1

m

)
. (2.2)

In the remainder of this paper, we will use F̂ , F̂−1, and ε without explicitly referring
to the number of samples m and confidence parameter δ.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 17

0

1

1

R?(q)
R(q)

(a) Revenue curve R(q) and the optimal
induced revenue curve R?(q).

0

8

1

φ?(q)
φ(q)

(b) Virtual value function ϕ(q) and the
induced virtual value function ϕ?(q).

Figure 2.1: The dashed gray line is the revenue curve R(q) and its derivative, the
virtual value function ϕ(q), for a irregular bimodal distribution. In black we have
the curves ϕopt and Ropt corresponding to the optimal ironing interval, and optimal
reserve price for this distribution. This example taken from [Hartline, 2014, Chapter
3].

2.2.2 Optimal Auctions using the Revenue Curve

Revenue Curve and Quantile Space For a value v and a distribution F , we
define the corresponding quantile as 1− F (v).5 The quantile of v corresponds to the
sale probability for a single bidder with valuation drawn from F who faces a posted
price v. Note that higher values v correspond to lower quantiles. The revenue curve
R of a valuation distribution F is the curve, in quantile space, defined by R(q) =
q ·F−1(1−q) (Figure 2.1a). Myerson [1981] showed that the ex ante expected revenue
for a bidder in a truthful auction is Eq∼U [0,1][−R(q) · y′(q)], where y is the interim
allocation function (defined formally below) for that auction. The derivative of R is
the virtual value function ϕ(.) — recall (2.1) — in quantile space, see Figure 2.1b.
For regular distributions the revenue curve is concave and the virtual value function
non-increasing, but for irregular distributions this is not the case.

Myerson [1981] showed that for any non-concave revenue curve R, one can create
an allocation rule that will yield the same revenue as R’s convex hull CH(R). This pro-
cedure is called ironing, and for each interval where R differs from CH(R), we define
the ironed virtual value to be slope of the convex hull over this interval. This means
the virtual values are equal in this interval, and hence any two bids in that range are
interchangeable, and so an iron-based allocation function is constant on this interval.6

5This is for consistency with recent literature; “reversed quantile” might be a more accurate term.
6It takes some effort to show that keeping the allocation probability constant on an interval has

exactly the effect we described here [Myerson, 1981].

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 18

The resulting ironed revenue curve R? will be concave and the corresponding ironed
virtual value function ϕ? will be non-decreasing. It is also useful to think of a reserve
price r (with corresponding quantile qr) in a similar way, as effectively changing the
virtual valuation function so that ϕ?(q) = 0 whenever q ≥ qr (Figure 2.1b), with the
corresponding revenue curve R? constant in that region (Figure 2.1a).7

More generally, given any set of disjoint ironing intervals I and reserve price
r, both in value space, we can imagine the effect on the revenue curve as follows.
(For now this is a thought experiment; Proposition 2.3 connects these revenue curve
modifications back to allocation rule modifications.) Let R be the revenue curve
without ironing or a reserve price, and define R(I,r) as the revenue curve induced by
a set I of ironing intervals and reserve price r. This curve is defined by

R(I,r)(q) =

R(F (r)) if q > F (r)

R(qa) + q−qa
qb−qa

(R(qb)−R(qa)) if q ∈ (qa, qb]

with [F−1(1− qb), F−1(1− qa)) ∈ I
R(q) otherwise.

(2.3)

Given I and r as above, we define the auction A(I,r) as follows: given a bid profile:
(i) reject every bid with bi < r; (ii) for each ironing interval [a, b) ∈ I, treat all bids
{bj : a ≤ bj < b} as identical (equal to some common number between a and b); (iii)
among the remaining bidders, maximize the sum of the ironed bids of the winners;
(iv) charge payments so that losers always pay 0 and so that truthful bidding is a
dominant strategy for every player. This auction is well defined (i.e., independent of
the choice of the common numbers in (ii)) in settings where the computation in (iii)
depends only on the ordering of the ironed bids, and not on their numerical values. In
this case, the payments in (iv) are uniquely defined (by standard mechanism design
results). This is the case in every matroid environment8 and also in position auctions.9

In such a setting, we use A to denote the set of all auctions of the form A(I,r). We
restrict attention to such settings in the remainder of the paper.

7Most of the existing literature would not consider the effect of the reserve price on the revenue
curve, in which case the black and dashed lines would coincide after the second peak. However, by
including its effect as we did, we’ll be able to apply the Switching Trick described below.

8In a matroid environment, the set F of feasible outcomes satisfies: (i) (downward-closed) T ∈ F
and S ⊆ T implies S ∈ F ; and (ii) (exchange property) whenever S, T ∈ I with |T | < |S|, there is
some i ∈ S \ T such that T ∪ {i} ∈ I.

9In a position auction, n bidders vie for k “slots,” with at most one bidder assigned to each slot
and at most one slot assigned to each bidder. Being assigned slot j corresponds to an allocation
amount αj , which historically corresponds to a “click-through rate.” See [Edelman et al., 2007] and
[Varian, 2007] for details.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 19

The Switching Trick Given a distribution F , we explained two ways to use iron-
ing intervals I and a reserve price r: (i) to define a modified revenue curve R(I,r)

(and hence virtual valuations); or (ii) to define an auction A(I,r). The “switching
trick” formalizes the connection between them: the expected maximum virtual wel-
fare with the modified virtual valuations (corresponding to the derivative of R(I,r))
equals the expected virtual welfare of the modified auction A(I,r) with the original
virtual valuations.

More formally, let xi : Rn
+ → R+ be the ex-post allocation function of the welfare

maximizing truthful auction that takes the bids b of all players and results in the
allocation to bidder i. The interim allocation function yi : [0, 1]→ R+ is the expected
allocation to bidder i when her quantile is q, where the expectation is over the quan-
tiles of the other bidders: yi(qi) = Eq−i∼U [0,1]n−1 [x(F−1(1− qi), F−1(1− q−i))] where
F−1(1 − q−i) is b−i for which each bj = F (1 − qj). For example, in the standard
Vickrey (single-item) auction with n bidders, every bidder i has the interim allocation
function yi(q) = (1− q)n−1.10

For every auction of the form A(I,r), the interim allocation function y
(I,r)
i of a

bidder i can be expressed in terms of the interim allocation function yi without
ironing and reserve price (see also Figure 2.1b):

y
(I,r)
i (q) =

0 if q > F (r)
1

qb−qa

∫ qb
qa
y(q)dq if q ∈ [qa, qb) with [F−1(1− qb), F−1(1− qa)) ∈ I

yi(q) otherwise.

(2.4)

Proposition 2.3 (Switching Trick). Consider a matroid or position auction setting,
as above. For every valuation distribution F , every reserve price r, every set I of
disjoint ironing intervals, and every bidder i,

Eq∼U [0,1][R(q) · (y(I,r)i)′(q)] = Eq∼U [0,1][R
(I,r)(q) · y′i(q)].

Proof. Fix F , I, r, and y. Let y(I,r) be the interim allocation rule from running
auction A(I,r). Let R be the revenue curve of F and let R(I,r) denote the revenue
curve induced by I and r.

• Define a distribution F (I,r) (which is not equal to F unless I = ∅ and r = 0)
that has the property that its revenue curve q · F (I,r)(1 − q) is R(I,r). To see
that this is well-defined, observe the following. Any line ` through the origin
only intersects R(I,r) once (if there are point masses in F then a line through

10In general matroid settings, different bidders can have different interim allocation functions
(even though valuations are i.i.d.).

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 20

Revenue Curve Description

R q · F−1(1− q)
R̂min q · F̂−1(1− q − ε)
R̂max q · F̂−1(1− q + ε+ 1

m
)

Table 2.1: Overview of notation for revenue curves.

the origin intersects R in a single interval). This means that we can use R(I,r)

to construct F (I,r): F (I,r)(v) is the q for which q · v intersects with R(I,r)(q)
(if there are any point masses then there will be a range of q for which this is
the case; in that case take the largest such q). Alternatively, see [Hartline and
Roughgarden, 2008] for an explicit formula for F (I,r).

• If we run the same auction A(I,r) on bidders with values drawn from F (I,r), the
expected revenue is identical to the auction with bidder values drawn from F :

Eq∼U [0,1][R(q) ·
(
y(I,r)

)′
(q)] = Eq∼U [0,1][R

(I,r)(q) ·
(
y(I,r)

)′
(q)].

This can easily be seen by filling in the definitions from (2.3) and (2.4).

• If the bidders have distribution F (I,r), then we might as well not iron or have a
reserve price at all; so

Eq∼U [0,1][R
(I,r)(q) ·

(
y(I,r)

)′
(q)] = Eq∼U [0,1][R

(I,r)(q) · y′(q)].

This is also easily seen by filling in the definitions.

2.2.3 Notation

In the remainder of this paper, our analysis will rely on bounding the difference in
revenue of an auction with respect to the optimal auction in terms of their revenue
curves. We will use the following conventions, see Table 2.1. The unaltered revenue
curve for distribution F is denoted by R(q) = q · F−1(1 − q). To denote when we
use an estimator for a revenue, i.e. a revenue curve that is constructed based on

samples, we use a hat: R̂(q) = q · F̂−1(1 − q). Based on the available samples we
construct high-probability upper and lower bounds for R, that are thus denoted as

R̂max(q) = q · F̂−1(1− q + ε+ 1
m

) and R̂min(q) = q · F̂−1(1− q − ε).
We use a superscript to denote when a revenue curve is ironed and has a reserve

price. For a general set of ironing intervals I and reserve price r, R(I,r) is the revenue

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 21

curve induced by it, see (2.3). The superscript ? denotes that the revenue curve
is optimally ironed and reserved, i.e. R? is the revenue curve of Myerson’s auction
using F , and R̂?

max is the revenue curve corresponding to the convex hull of R̂max

that additionally stays constant after the highest point. Finally, we use Ralg and
Ropt to denote an algorithm ALG’s revenue curve and the optimal revenue curve for
F respectively (thus Ropt = R?, but when appropriate we use Ropt to emphasize its
relation to Ralg).

For the ironing intervals I (and reserve price r) we use Iq (resp. rq) when it is
important that the ironing intervals are defined in quantile space. Finally, Iopt, Ialg,
and Imax (and similarly for reserve price r) refer to the ironing intervals of the optimal

auction, algorithm ALG and the optimal ironing intervals for R̂max respectively.

2.3 Additive Loss in Revenue for Single-Item Auc-

tions

For ease of exposition, most of the technical sections focus on an unknown distribution
with support in [0, H]. Section 2.6 explains how our results extend to all distributions
for which the optimal auction does not obtain a constant fraction of its expected
revenue from valuation profiles with at least one extremely high-valued bidder.

This section describes an algorithm that takes a set X of m samples, and a con-
fidence parameter δ as input, and outputs a set I of ironing intervals and a reserve
price r, both in value space. This section focuses on the case where I and r are used
in a single-item auction A

(I,r)
(1) ∈ A (recall the notation in Section 2.2) and shows

that the additive loss in revenue of A
(I,r)
(1) with respect to the revenue of the optimal

auction Aopt(1) for single-item auctions is O(ε · n ·H), with ε =
√

ln 2δ−1

2m
. In section 2.4

we extend the results to matroid and position auctions.

Theorem 2.4 (Main Theorem). For a single-parameter environment with optimal
auction of the form A(I,r) with n i.i.d. bidders with values from unknown irregular
distribution F , with m i.i.d. samples from F , the additive loss in expected revenue of

Algorithm 2 compared to the optimal expected revenue is at most 3 · n · H ·
√

ln 2δ−1

2m

with probability at least 1− δ.

2.3.1 The Empirical Myerson Auction

We run a variant of the Empirical Myerson auction, which we have divided into
two parts: the first is a learning algorithm ALG (Algorithm 1) that computes ironing
intervals I and a reserve price r based on samples X and confidence parameter δ. The

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 22

Algorithm 1 Compute the ironing intervals I and reserve price r.

ComputeAuction(X, δ)

1 Construct F̂−1 from X; let ε =
√

ln 2·δ−1

2|X| .

2 Construct R̂min(q) = q · F̂−1(1− q − ε).
3 Compute the convex hull CH(R̂min), of R̂min.

4 Let Iq be the set of intervals where R̂min and CH(R̂min) differ.
5 for each quantile ironing interval (ai, bi) ∈ Iq
6 Add [F̂−1(1− bi − ε), F̂−1(1− ai − ε)) to I.

7 Let the reserve quantile be rq = arg maxq R̂min(q).

8 Let the reserve price be r = F̂−1(1− rq − ε).
9 return (I, r)

Algorithm 2 Empirical Myerson.

EmpiricalMyerson(X, δ,b)

1 I, r ← ComputeAuction(X, δ)

2 return AI,r(1)(b)

second step is to run the welfare-maximizing auction subject to ironing and reservation
(Algorithm 2). In this section we focus on analyzing the single-item auction, but the
only place this is used is in line 2 of Algorithm 2. Auctions for position auctions
and matroid environments use the same learning algorithm (Algorithm 1) but then
run the welfare-maximizing auction for position auctions or matroid environments
respectively; we return to this in Section 2.4.

The Empirical Myerson auction takes an estimator for the quantile function F̂−1

and constructs its revenue curve. From this, the convex hull CH(R) is computed and
wherever CH(R) and R disagree, an ironing interval is placed. Then, the highest
point on R is used to obtain the reserve price quantile qr = arg maxq R(q). Note that
this is all done in quantile space, but we need to specify the reserve price and ironing
intervals in value space. So the last step is to use the empirical CDF F̂ to obtain the
values at which to place the reserve price and ironing intervals.

Our learning algorithm follows that approach, with the exception that in line 2

of ComputeAuction, we take the empirical quantile function to be F̂−1(1− q − ε)
rather than the arguably more natural choice of F̂−1(1− q). The motivation here is

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 23

to protect against overestimation — recall the cautionary tale of Example 2.2. From

the DKW inequality we can derive that F̂−1(1− q− ε) ≤ F−1(1− q) with probability
1− δ (we prove this in Lemma 2.6), so we would hope that using this will sufficiently
protect against overestimation, while incurring only a modest loss in revenue due
to underestimation. That this approach indeed leads to good revenue guarantees is
shown in the remainder of this section.

2.3.2 Additive Revenue Loss in Terms of Revenue Curves

We start with a technical lemma that reduces bounding the loss in revenue to bound-
ing the estimation error due to using samples as opposed to the true distribution
F .

Lemma 2.5. For a distribution F , let Ralg be the revenue curve induced by an al-
gorithm ALG ∈ A and let Ropt be the optimal induced revenue curve. The additive
revenue loss of ALG with respect to OPT is at most:

n · max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
.

Proof. First, to calculate the ex ante expected revenue of a bidder i with interim
allocation function yi,

11 revenue curve R, ironing intervals I and reserve price r, we
have by [Myerson, 1981]:

Rev[R, I, r] = −Eq∼U [0,1][R(q) · (y(I,r))′(q)]. (2.5)

Next, we apply the Switching Trick of Proposition 2.3. Let Ialg, Iopt be the sets of
ironing intervals and ralg, ropt be the reserve prices of ALG and OPT respectively.
This yields total revenues:

Rev[F, Ialg, ralg] =
n∑

i=1

∫ 1

0

−Ralg(q)y′i(q)dq,

Rev[F, Iopt, ropt] =
n∑

i=1

∫ 1

0

−Ropt(q)y′i(q)dq.

Note that the interim allocation function yi for bidder i is the same one in both equa-

tions; the only difference between y
(Iopt,ropt)
i and y

(Ialg ,ralg)
i was the ironing intervals and

reserve price, so after applying the switching trick, yi is simply the welfare-maximizing

11For single-item auctions with i.i.d. bidders, all bidders share the same interim allocation func-
tion. We write yi to facilitate our extension to matroid environments in the next section.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 24

interim allocation rule for bidder i.12 This is the key point in our analysis, and it
allows us to compare the expected revenue of both auctions directly:

Rev[F, Iopt, ropt]−Rev[F, Ialg, ralg] =
n∑

i=1

(
−
∫ 1

0

Ropt(q)y′i(q)dq +

∫ 1

0

Ralg(q)y′i(q)dq

)

=
n∑

i=1

∫ 1

0

(
Ropt(q)−Ralg(q)

)
(−y′i(q)) dq

≤ max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
·

n∑

i=1

∫ 1

0

−y′i(q)dq

= max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
·

n∑

i=1

(−yi(1) + yi(0))

≤ n · max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
.

The inequality holds as −y′i is non-negative. The last inequality holds because yi
always lies between 0 and 1. Rearranging the terms yields the claim.

This is significant progress: the additive loss in revenue can be bounded in terms
of the induced revenue curves of an algorithm ALG and the optimal algorithm, two
objects that we have some hope of getting a handle on. Of course, we still need to
show that the ironed revenue curve of Algorithm 1 is pointwise close to the ironed
revenue curve induced by the optimal auction (Section 2.3.3).

2.3.3 Bounding the Error in the Revenue Curve

We implement the following steps to prove that the error in the learning algorithm’s
estimation of the revenue curve is small. The proofs of this section appear in the full
version.

• (Lemma 2.6) We show that we can sandwich the actual revenue curve (without

ironing or reserve price) R between two empirical revenue curves, R̂min and R̂max

that are defined using the empirical quantile function.

• (Lemma 2.7 and Lemma 2.8) Let R̂?
max (resp. R̂?

min) be the optimally induced

revenue curve for R̂max (resp. R̂min). The revenue curve induced by Algorithm 1,
Ralg, is pointwise higher than the optimal induced revenue curve of the lower

12E.g., for single-item auctions, this is just the probability that bidder i has the largest valuation
(given its quantile).

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 25

R̂max = q · F̂−1(1− q + ε+ 1
m)

R(q) = q · F−1(1− q)
R̂min(q) = q · F̂−1(1− q − ε)R(q)

q10

Figure 2.2: We can sandwich R between two estimated revenue curves R̂min and R̂max.

bound R̂?
min, and the optimal induced revenue curve for the upper bound, R̂?

max,
is pointwise higher than Ropt.

• (Lemma 2.10) Finally, we show that R̂?
max(q) − R̂?

min(q) is small for all q, and
therefore the additive loss is small.

Lemma 2.6. For a distribution F and m samples from F . Let R̂min(q) = q · F̂−1(1−
q − ε) and R̂max(q) = q · F̂−1(1 − q + ε + 1

m
). With probability at least 1 − δ for all

q ∈ [0, 1]:

R̂min(q) ≤ R(q) ≤ R̂max(q).

Proof. See Figure 2.2 for graphical intuition. We start by proving the first inequality:
R̂min(q) ≤ R(q). By the DKW inequality with probability 1 − δ the following holds

for all v: −ε ≤ F̂ (v)− F (v). Define q′ = F (v) to obtain q′ − ε ≤ F̂ (v). Since F̂−1 is
monotonically non-decreasing, we have

F̂−1 (q′ − ε) ≤ F̂−1
(
F̂ (v)

)
≤ v = F−1(q′).

where the second inequality follows from (2.2) and the equality follows from the
definition of q′. Finally, let q = 1 − q′, and multiply both sides by q to obtain:
R̂min(q) ≤ R(q).

The proof for the upper bound of R is analogous with the exception that we pick
up another 1

m
term to invoke (2.2).

So while the the algorithm does not know the exact revenue curve R, it can be
upper bounded by R̂max and lower bounded by R̂min. We’ll use R̂min to give a lower

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 26

bound on the revenue curve Ralg induced by Algorithm 1, and R̂max to give an upper
bound on the revenue curve Ropt induced by Myerson’s optimal auction. We start
with the latter.

Lemma 2.7. Let Ropt be the optimal induced revenue curve of R, and let R̂?
max be the

optimal induced revenue curve for R̂max. Then with probability 1− δ for all q ∈ [0, 1]:

Ropt(q) ≤ R̂?
max(q).

Proof. By Lemma 2.6 we know that for every q with probability 1−δ, R̂max(q) ≥ R(q).
First take the effect of optimally ironing both curves into account. Optimal ironing
will lead to induced revenue curves R̂

(Imax)
max and R(Iopt) which are their convex hulls.

Since R̂max is pointwise higher, the convex hull R̂
(Imax)
max is pointwise higher than R(Iopt),

the convex hull of R. Thus, for all q ∈ [0, 1], we have R̂
(Imax)
max (q) ≥ R(Iopt)(q).

What remains to be proven is that this property is maintained after the effect of the
optimal reserve price of the curve. Let q be the reserve quantile for R; we distinguish
between two cases. For all q′ ∈ [0, q], we know that R̂?

max(q
′) ≥ R?(q′), because R? is

the same on this interval as R(Iopt), and setting the reserve price for R̂max can only
pointwise increase the curve. For all points q′ ∈ [q, 1] we have that R? is constant

with value R?(q). Recall that R̂
(Imax)
max (q) ≥ R(Iopt)(q) and since R̂?

max is monotonically

non-decreasing, we have that R̂?
max(q

′) ≥ R̂?
max(q) ≥ R?(q) = R?(q′).

So with high probability R̂?
max is pointwise higher than Ropt. Proving that R̂?

min is
a lower bound for Ralg is slightly more involved since the ironing intervals and reserve
price are given by Algorithm 1, and may not be optimal. Therefore, the induced
revenue curve Ralg is in general not concave, and the reserve quantile may not be at
the highest point of the curve. In the following lemma, we use the fact that that the
ironing intervals and reserve price of Ralg were chosen based on R̂min.

Lemma 2.8. Let Ralg be the revenue curve induced by Algorithm 1 and let R̂?
min be the

optimal induced revenue curve for R̂min. Then with probability 1− δ for all q ∈ [0, 1]:

R̂?
min(q) ≤ Ralg(q).

First we show that to prove pointwise dominance of curve Ralg over R̂min, it is
sufficient to show that any ray from the origin that intersects the revenue curves, first
intersects with R̂min and then Ralg.

Proposition 2.9 (Ray Dominance). For two (potentially ironed) revenue curves R
and R′, if all rays from the origin that intersect with R or R′ intersect R before R′,
then it must be that R(q) ≤ R′(q) for q ∈ [0, 1].

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 27

Ralg(q)

R̂min(q) = q · F̂−1(1− q − ε)

R(q)

q10

R(q) = q · F−1(1− q)

va vb vr

Figure 2.3: When we pick a value range to iron based on R̂min, its effect on the actual
revenue curve can be seen. The quantiles of the start and end point of the ironing
procedure are given by the line that intersects the start and end point on R̂min and
the origin.

Proof. Fix R,R′. WLOG assume that R and R′ are not ironed.13 First observe that
a revenue curve S consists of the set of points {(1− F (v), v · (1− F (v))) : v ∈ R+},
where F is the CDF corresponding to S. Therefore a ray from the origin with slope
v′ intersects S on the set of points {(1−F (v), v · (1−F (v))) : 1−F (v) = 1−F (v′)}.
Since 1 − F (v) is non-increasing, this can only happen in either a single point, or
single line segment.

We prove the contrapositive. If R is not dominated by R′, then by continuity there
is an interval (q1, q2) with q1 < q2 where R is above the graph of R′. Let q′ = q1+q2

2

be the midpoint. Take the ray that starts at the origin and has slope R′(q′)
q′

. This

ray intersects R′ in the point (q′, R′(q′)). Since R′(q) > R(q) for q ∈ (q1, q2), and R′

is continuous, the ray must intersect with R′ after it intersected with R. Since rays
from the origin only intersect a revenue curve once, it could not have intersected R′

before R either.

What remains to be shown is that all rays through the origin intersect R̂min before
they intersect Ralg.

Proof of Lemma 2.8. Again we first argue that after ironing the induced curve R̂
(Imin)
min

is completely below R(Ialg), and subsequently show that this is after setting the reserve
price R̂?

min is below Ralg.

Algorithm 1 picks the ironing intervals based on where R̂?
min differs from CH(R̂min),

so there is a matching between the ironing intervals in R̂min and Ralg. However, R̂min

13Recall that from the Switching Trick, any ironed revenue curve can be written as the revenue
curve for an unironed, different CDF.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 28

and Ralg are not ironed on the same intervals in quantile space, but on the same
intervals in value space. We treat the effect of ironing, on an interval-by-interval
basis; each time ironing both R̂min and R with corresponding ironing intervals.14

Initially, with probability 1 − δ we have that R̂min ≤ R for all q ∈ [0, 1]. If we

start out with R̂min ≤ R and we iron one interval [va, vb], then afterwards R̂min will

still be at most R everywhere: both R̂min and R are ironed on the same interval
in value space [va, vb). We can find the quantiles between which R̂min and R are
ironed, by looking at the line with slope va (resp. vb) that goes through the origin,
see Figure 2.3. Anything counterclockwise from the va line, and clockwise from the
vb line is unchanged, and therefore R will be higher than R̂min. Between the lines for
va and vb the curves R̂min and R are replaced by a line segment. Since the latter’s
endpoints are above R̂min, the entire line segment of R is above R̂min. Therefore, after
ironing this interval, the induced R̂min is still below the induced R. Repeating this
for all ironing interval yields that for all q ∈ [0, 1] we have R̂

(Imin)
min (q) ≤ R(Ialg)(q).

Finally, for the reserve price vr, the same analysis holds: the quantiles where the
revenue curves are reserved can be found by the intersection with the line with slope
vr that goes through the origin. Everything counterclockwise stays the same, on the
clockwise side R̂min stays constant at a value that must be at most the value at which
R stays constant. Hence for all q ∈ [0, 1] we have R̂?

min(q) ≤ Ralg(q).

We now have our upper bound and lower bounds in terms of F̂−1. Finally we
show that the difference between the two is small.

Lemma 2.10. For a distribution F , let Ralg be the revenue curve induced by Algo-
rithm 1 and Ropt the optimal induced revenue curve. Using m samples from F , with

probability 1− δ and ε =
√

ln 2·δ−1

2m
for all q:

Ropt(q)−Ralg(q) ≤ R̂?
max(q)− R̂?

min(q) ≤
(

2ε+
1

m

)
H ≤ 3ε ·H.

Proof. Let Imax and rmax be the set of ironing intervals and reserve price in quantile
space of R̂?

max. Comparing R̂?
max and R̂?

min directly is difficult since their ironing
intervals and reserve price may be quite different. Instead, we will take the set Imax

of ironing intervals [ai, bi), and reserve quantile rmax from R̂?
max and use this to iron

R̂min(q) at intervals [ai− 2ε− 1
m
, bi− 2ε− 1

m
), and set a reserve price of rmax− 2ε− 1

m
.

If we compare R̂?
max against this induced curve R̂

(Imax,rmax)
min , we have an upper

bound for the difference with respect to R̂?
min, since R̂?

min is the optimal induced

revenue curve and therefore pointwise higher than R̂
(Imax,rmax)
min . We can reason about

14This can be made rigorous by induction on the set of ironing intervals.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 29

ironing in quantile space without loss of generality since both R̂max and R̂min use the

same function F̂−1.15

There are 3 cases to handle: 1) if q falls in an ironing interval [ai, bi) ∈ Imax, 2)

if the quantile q is higher than the reserve quantile q ≥ rmax of R̂max, and 3) when

neither of those cases apply. We start with the case for a q where R̂?
max(q) = R̂max,

i.e. q does not fall in an ironing interval and is smaller than the reserve quantile:

R̂?
max(q) = q · F̂−1

(
1− q + ε+

1

m

)

≤
(
q − 2ε− 1

m

)
· F̂−1

(
1− q + ε+

1

m

)
+

(
2ε+

1

m

)
H

= R̂min

(
q − 2ε− 1

m

)
+

(
2ε+

1

m

)
H

= R̂?
min

(
q − 2ε− 1

m

)
+

(
2ε+

1

m

)
H

≤ R̂?
min(q) +

(
2ε+

1

m

)
H

where the first inequality holds because F̂−1(q) ≤ H for all q and the last inequality

follows because R̂?
min is monotonically non-decreasing. Rearranging yields the claim

for q not in an ironing interval or reserved.
The other cases follow similarly: consider the case where q ≥ rmax.

R̂?
max(q) = R̂max (rmax)

= rmax · F̂−1
(

1− rmax + ε+
1

m

)

≤
(
rmax − 2ε− 1

m

)
· F̂−1

(
1− rmax + ε+

1

m

)
+

(
2ε+

1

m

)
H

= R̂min

(
rmax − 2ε− 1

m

)
+

(
2ε+

1

m

)
H

≤ R̂?
min

(
rmax − 2ε− 1

m

)
+

(
2ε+

1

m

)
H

≤ R̂?
min (q) +

(
2ε+

1

m

)
H

15Alternatively think of it as ironing in value space based on R̂max, the line through the origin
and R̂max(q) intersects R̂min at q − 2ε− 1

m .

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 30

where the last inequality holds because rmax − 2ε − 1
m
≤ rmax ≤ q and R̂?

min is non-
decreasing.

Finally the case for when q falls in an ironing interval is analogous: R̂?
max(q) is

a convex combination of the end points of the ironing interval: R̂?
max(q) = q−ai

bi−ai ·
R̂max(ai) +

(
1− q−ai

bi−ai

)
R̂max(bi) and hence

R̂?
min(q) ≥ q − ai

bi − ai
· R̂min

(
ai − 2ε− 1

m

)
+

(
1− q − ai

bi − ai

)
R̂min

(
bi − 2ε− 1

m

)

+

(
2ε+

1

m

)
H.

And so R̂?
max(q)− R̂?

min(q) ≤
(
2ε+ 1

m

)
H in all cases.

Theorem 2.4 now follows by combining Lemmas 2.5 and 2.10. The additive loss
in expected revenue of Algorithm 2 is at most 3ε · n ·H.

Proof of Theorem 2.4. By Lemma 2.5 we can express the total additive error of the
expected revenue of an algorithm that yields ironing intervals Ialg and reserve price
ralg with respect to the optimal auction as:

Rev[F, Iopt, ropt]−Rev[F, Ialg, ralg]
n

≤ max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
.

By Lemma 2.10, Algorithm 2 yields

max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
≤
(

2ε+
1

m

)
H.

The theorem follows.

When the optimal revenue is bounded away from zero, we get an analogous sam-
ple complexity bound for learning (efficiently) a (1− ε)-(multiplicative) approximate
auction.

2.4 Matroid and Position Environments

The results of the previous section extend to matroid and position auction environ-
ments.

Theorem 2.11. For position and matroid auctions with n i.i.d. bidders with values
from unknown distribution F , m i.i.d. samples from F , with probability 1 − δ, the

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 31

additive loss in expected revenue of running the welfare-maximizing auction using
ironing intervals and reserve price from Algorithm 1 compared to the optimal expected

revenue is at most 3 · n ·H ·
√

ln 2δ−1

2m
.

The learning algorithm uses the same subroutine (Algorithm 1) to learn ironed
intervals and a reserve price, and returns the auction that first deletes all bidders
not meeting the reserve and then chooses the feasible outcome maximizing the ironed
virtual welfare. The proof follows from Proposition 2.12 and Proposition 2.13, which
show that the optimal auctions for matroid and position auction environments are
in A (i.e., have the form A(I,r) for a suitable choice of ironed intervals I and reserve
price r), and from Lemmas 2.5–2.10, which rely only on this property.

2.4.1 Position Auctions

A position auction [Varian, 2007] is one where the winners are given a position, and
position i comes with a certain quantity xi of the good. The canonical example is
that of ad slot auctions for sponsored search, where the best slot has the highest
click-through-rate, and subsequent slots have lower and lower click-through-rates. In
an optimal auction, the bidder with the highest ironed virtual value gets the best
slot, the second highest ironed virtual value the second slot, and so on.

Proposition 2.12. The optimal auction Aopt(pos) for position auctions can be expressed

as an auction with ironing and reserve price in value space: Aopt(pos) ∈ A.

Proof. In the optimal auction, the bidder with the highest ironed virtual value is
awarded the first position (with allocation x1), the bidder with the second highest
ironed virtual value the second position with x2, and so on. Since the ironed virtual
value is monotonically non-decreasing in the value of a bidder, and identical in ironing
intervals, this can equivalently be described by an auction in A.

2.4.2 Matroid Environments

In a matroid environment, the feasible allocations are given by matroid M = (E, I),
where E are the players and I are independent sets. The auction can simultaneously
serve only sets S of players that form an independent set of the matroid S ∈ I. A
special case of this is the rank k uniform matroid, which accepts all subsets of size at
most k, i.e. it is a k-unit auction environment.

In matroid environments, the ex-post allocation function xi(b) and interim allo-
cation function yi(q) are no longer the same for each player, e.g. imagine a player
i who is not part of any independent set, then y(q) = 0 everywhere. However, the
optimal allocation can still be expressed in terms of an auction A ∈ A.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 32

Algorithm 3 A no-regret algorithm for optimal auctions.

No-Regret-Auction(δ, T)

1 B Round 0:
2 Collect a set of bids b, run an arbitrary mechanism
3 X ← b
4 for round t = 1...T
5 Collect a set of bids b
6 EmpiricalMyerson(X, δ/T,b)
7 X ← X ∪ b

Proposition 2.13. The optimal auction Aopt(mat) for matroid auctions can be expressed

as an auction with ironing and reserve price in value space: Aopt(mat) ∈ A.

Proof. A property of matroids is that the following simple greedy algorithm yields
the optimal solution:

Greedy(E, I)

1 S ← ∅
2 while {i : i 6∈ S ∧ S ∪ {i} ∈ I} 6= ∅
3 add arg max{vi : i 6∈ S ∧ S ∪ {i} ∈ I} to S
4 return S

where vi is the (ironed virtual) value associated with bidder i. Since the order of
largest values is the same for both virtual values and bids (up to ties), the allocation
of the optimal auction is identical to the auction that irons on Iopt and has reserve
price ropt (up to tie-braking); hence Aopt(mat) ∈ A.

2.5 No-Regret Algorithm

So far we assumed access to a batch of samples before having to choose an auction.
In this section we show that running the algorithm in a repeated setting, using past
bidding behavior as the samples, leads to a no regret algorithm. The goal here is to
achieve total additive error o(T) ·O(poly(n,H, δ)) — the error can be polynomial in
all parameters except the time horizon T , for which it should be sublinear. We show
that for Algorithm 3 the total loss grows as Õ(

√
T
√
n
√

log(δ−1)H) and hence results
in a no-regret algorithm.

We run Algorithm 3. Invoking Theorem 2.4 with confidence parameter δ/T and
taking a union bound over the rounds, we have the following fact.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 33

Proposition 2.14. With probability 1− δ, for all rounds simultaneously, each round

t ∈ [1, T] of Algorithm 3 has additive loss at most 3
√

ln(2Tδ−1)
2nt

· n ·H.

This leads to the following no-regret bound.

Theorem 2.15. With probability 1 − δ, the total additive loss of Algorithm 3 is
O(
√
n
√
T log T

√
log δ−1 ·H), which is Õ(T 1/2) with respect to T .

Proof. By Proposition 2.14 with probability 1− δ for all rounds simultaneously, the

additive loss for round t is bounded by 3
√

ln(2Tδ−1)
2nt

· n · H. The loss of day 0 is at

most H · n. The total loss can then be bounded by:

(n ·H) ·
(

1 + 3
T∑

t=1

√
ln(2Tδ−1)

2nt

)

We can rewrite the sum:

T∑

t=1

√
ln(2T/δ)

2nt
=

√
ln(2T/δ)

2n
·

T∑

t=1

√
1

t

≤
√

ln(2T/δ)

2n
· 2
√
T

=

√
2T ln(2T/δ)

n

Hence the total loss is

(n ·H) ·
(

1 + 3

√
2T ln(4T/δ)

n

)
= O(

√
n
√
T log T

√
log δ−1 ·H);

the dependence on T is O(
√
T log T) = Õ(

√
T).

The bound of O(
√
T log T) is almost tight, as there is a lower bound of Ω(

√
T)

given by Cesa-Bianchi et al. [2015]. Also note that if we do not know T a priori, we
can use a standard doubling argument to obtain the same asymptotic guarantee.

2.6 Unbounded Distributions

Our results do not require bounded valuations. As mentioned in the introduction
(Footnote 4), however, for any non-trivial results it is necessary to make some type of
assumption to exclude certain pathological distributions. Our approach is to limit how

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 34

much revenue the optimal auction obtains from the tail of the distribution. Formally,
for a parameter H and function η(n), we say that F is an (H, η(n)) distribution if,
with n bidders with valuations drawn i.i.d. from F , the contribution to the optimal
expected revenue by valuation profiles with some bidder with valuation more than H
is at most η(n). See below for a concrete example.

Let ALG be the algorithm that rounds down any bid bigger than H to H, and
then runs Algorithm 2 on the rounded bids. We get the following result.

Theorem 2.16. If F is an (H, η(n)) distribution and the number m of samples is
Ω (ε−2 ln δ−1n2H2), then with probability 1−δ we have Rev[ALG] ≥ (1−ε)Rev[OPT]−
η(n).

Proof. Split Rev[OPT] into the revenue that is generated when 1) there is at least
one bidder with value strictly more than H, and 2) when all bidders have value at
most H. Let Z be the event that there is at least one bidder with value strictly more
than H. Using Theorem 2.4 and the definition of an (H, η(n))-distribution, we have

Rev[ALG] ≥ (1− ε) ·Rev[OPT |¬Z]

≥ (1− ε) · (Rev[OPT]− η(n))

≥ (1− ε) ·Rev[OPT]− η(n).

Many distributions, including many irregular and unbounded distributions, are
(H, η(n))-distributions with reasonable parameters. We give one example to prove
this point; it should be clear from the exercise that there are many other examples.

Example 2.17 (Unbounded Irregular Distribution). Take the distribution

F (x) =

{
x(1− e−1) for 0 ≤ x ≤ 1

1− e−x for x ≥ 1.

This distribution is with probability 1−e−1 uniform on [0, 1] and otherwise exponential
with rate 1. The revenue curve (Figure 2.4) is not concave, so this distribution is not
regular. Elementary computations show that it is a (10 lnn, 10−6)-distribution (for all
n). Hence with Ω

(
ε−2 ln δ−1n2 ln2 n

)
samples, Rev[ALG] ≥ (1− ε)Rev[OPT]− 10−6

(with probability at least 1− δ). Since Rev[OPT] ≈ 0.2 even with n = 1, this additive
error is negligible.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 35

Figure 2.4: The revenue curve of distribution F in Example 2.17 that’s both irregular
and unbounded.

Chapter Appendix

2.A Reduced Information Model

This appendix considers a reduced information model for single item auctions with
i.i.d. bidders. The information that the auctioneer sees is the second highest bid,
see also [Cesa-Bianchi et al., 2015]. The goal is to model an observer who can see
the outcome of past auctions, and perhaps submit a “shill bid” to set a reserve, but
cannot directly observe the bids.

We assume we observe m samples from the second highest order statistic (so out of
n i.i.d. bids, we see the second highest bid). We show that there are distributions such
that, in order to get the performance close to that of running Myerson in the reduced
information model, you first need to see at least an exponential number of samples.
This is far more than what would be needed with regular valuation distributions,
where only the monopoly price is relevant.

2.A.1 Lower Bound

Theorem 2.18. For any ε > 0, to obtain 1
4
− ε additive loss compared to Myerson’s

auction, with constant probability you need Ω(2n/n) samples from F(2).

Before proving the statement, let’s think about what this means: it means that if
all we observe are samples from F(2), for large n, we cannot hope to get a vanishing
regret in a polynomial (in n) number of steps. Moreover, on this distribution, Myerson
obtains at most 2 expected revenue, so we lose at least 1

8
of the profit (see corollary

after the proof).

Proof of Theorem 2.18. We’ll give 2 distributions, D1 and D2, such that we need
Ω(2n) samples from F(2) to differentiate between the two. Moreover, we’ll show that
every auction that approximates the optimal auction for either D1 or D2, incurs an
additive loss of at least 1

2
(1− 1√

2
) on one of the two.

We define D1 and D2 by their quantile function:

36

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 37

D1

D2

1

0

R(q)

q1
2 1

2

3
2

1
H

(a) Two distributions, D1 and D2 that
are hard to distinguish using samples
from F(2). The distributions agree on
q ∈ [0, 1/2] and disagree elsewhere.

D1

D2

1

0

R(q)

q1
2 1

2

3
2

1
H

c

aD1

aD2

(b) Consider ironing on [c,H). The top
shaded area indicates the loss with re-
spect to D1 and the bottom shaded area
represents the loss with respect to D2.

Figure 2.5: Lower bound example for optimal auctions using samples from F(2).

D−11 (q) =

{
H for q ≤ 1

H

2 otherwise

D−12 (q) =

H for q ≤ 1
H

2 for 1
H
< q ≤ 1

2

1 + 1
2q

otherwise.

Here H � n is a sufficiently large constant. The two distributions agree on
q ∈ [0, 1

2
]. For q ∈ (1

2
, 1] they differ, and the effect on the revenue curve can be seen

in Figure 2.5a.
To complete the proof we need to show 2 things: 1) that differentiating between

D1 and D2 based on samples from F(2) requires Ω(2n/2) samples, and 2) that no
auction can simultaneously approximate the optimal solution for both.

The first aspect of this is straightforward. Whenever we observe a sample from
F(2) from the top half quantile: q ∈ [0, 1

2
], we get no information, since this is the

same for both distributions. So a necessary condition for differentiating between D1

and D2 is if we observe a sample from q ∈ (1
2
, 1]. For this to happen, we need that out

of n draws, n − 1 draws are in the bottom quantile. This happens with probability
n

2n−1 , so after 2n

n
samples, with probability approximately 1 − 1

e
we haven’t seen a

sample that will differentiate the two distributions.
Now we will show that until the moment when you can differentiate between D1

and D2, there is no way to run an auction that performs well for both. Note that

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 38

the optimal auction for D1 is to iron [2, H) and the optimal auction for D2 is to iron
[3
2
, H). Neither has a reserve price. The set of all auctions that could potentially

work well for either, is the set of auctions that irons [c,H) (see Figure 2.5b).
For simplicity, we’ll only count the loss we incur in the range [0, 1

2
], take H →∞

and we see that if a is the height of the shaded region (of D1 resp. D2) at q = 1
2
, then

its loss with respect to the optimal auction is:

n ·
∫ 1

2

0

2aq · (n− 1)(1− q)n−2dq =
[
2anq(1− q)n−1

]1/2
0
− 2an

∫ 1
2

0

(1− q)n−1dq

= 2an

(
1

2

)n−1
− 2an

[
1

n
(1− q)n

]1/2

0

= 2an

(
1

2

)n−1
− 2an

1

n

(
1

2

)n
+ 2an

1

n

= 2an

(
1

2

)n−1(
1− 1

2n

)
+ 2a

≥ 2a

This means, that if we can show that for all choices of c ∈ [3/2, 1] at least one of
D1, D2 has a large a, we are done. The closer c is to 2, the smaller aD2 is, the closer
c is to 3/2, the smaller aD1 , so we’ll balance the two and show that neither is small
enough.

Finding aD1 in terms of c is easy enough: aD1 = 2−c
2

. aD2 is slightly harder: we
first need to find the intersection of q · c and RD2(q):

1

2
+ q = qc

(c− 1)q =
1

2

q =
1

2(c− 1)

So the lower part of the shaded area of D2 is a line that passes through the points
(0, 1) and (1

2(c−1) ,
c

2(c−1)). The line segment that connects the two is given by the

equation 1 + q(2− c) hence at q = 1
2

it is 2− c/2, therefore aD2 = 5
4
− 2 + c

2
= c

2
− 3

4
.

Setting aD1 = aD2 yields c = 7
4

with aD1 = aD2 = 1
8
. Therefore, for any auction

that we decide to run will have additive loss of 2a = 1
4

on one of the two distributions,
and we need Ω(2n/n) samples to decide which distribution we are dealing with.

CHAPTER 2. LEARNING OPTIMAL AUCTIONS 39

Corollary 2.19. For any ε > 0, to obtain a (7
8

+ ε)-approximation (multiplicative)
to Myerson’s auction, with constant probability you need Ω(2n/n) samples.

Proof. We can upper bound the revenue curve by the constant 2, to show that the
optimal auction cannot have expected revenue more than 2. Since we have additive
loss of 1/4, the multiplicative approximation ratio is at most 7

8
.

Chapter 3

Learning Utilities in Succinct
Games

One of the central questions in game theory deals with predicting the behavior of
agents, based on their utilities for different outcomes.1 But in typical situations,
we may be able to observe the behavior of agents, while their utilities are unob-
served. This motivates looking at the inverse of the traditional problem: given the
agents’ equilibrium behavior, what are possible utilities that motivate this behavior?
We consider this problem in arbitrary normal-form games in which the utilities can
be represented by a small number of parameters, such as in graphical, congestion,
and network design games. In all such settings, we show how to efficiently, i.e. in
polynomial time, determine utilities consistent with a given correlated equilibrium.
However, inferring both utilities and structural elements (e.g., the graph within a
graphical game) is in general NP-hard. From a theoretical perspective our results
show that rationalizing an equilibrium is computationally easier than computing it;
from a practical perspective a practitioner can use our algorithms to validate behav-
ioral models.

3.1 Introduction

One of the central and earliest questions in game theory deals with predicting the
behavior of an agent. This question has led to the development of a wide range of
theories and solution concepts —such as the Nash equilibrium— which determine the
players’ actions from their utilities. These predictions in turn may be used to inform
economic analysis, improve artificial intelligence software, and construct theories of

1The work in this chapter is based on joint work with Volodymyr Kuleshov and was presented at
WINE’15 [Kuleshov and Schrijvers, 2015]. Volodymyr Kuleshov was the first author on the paper.

40

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 41

human behavior.
Perhaps equally intriguing is the inverse of the above question: given data of the

observed behavior of players in a game, how can we infer the utilities that led to this
behavior? Surprisingly, this question has received much less attention, even though
it arises just as naturally as its more famous converse.

For instance, inferring or rationalizing player utilities ought to be an important
part of experimental protocols in the social sciences. An experimentalist should test
the validity of their model by verifying whether it admits any utilities that are consis-
tent with observed data. More ambitiously, the experimentalist may wish to develop
predictive techniques, in which one tries to forecast the agents’ behavior from earlier
observations, with utilities serving as an intermediary in this process.

Inferring utilities also has numerous engineering applications. In economics, one
could design mechanisms that adapt their rules after learning the utilities of their
users, in order for instance to maximize profits. In machine learning, algorithms that
infer utilities in a single-agent reinforcement learning setting are key tools for devel-
oping helicopter autopilots, and there exists ongoing research on related algorithms
in the multi-agent setting.

3.1.1 Our Contributions.

Previous work on computational considerations for rationalizing equilibria has only
considered specific settings, such as matching [Kalyanaraman and Umans, 2008] and
network formation games [Kalyanaraman and Umans, 2009]. Here, we instead take
a top-down approach and consider the problem in an arbitrary normal-form game.
Although our results hold generally, the problem becomes especially interesting when
the normal-form game is succinct, meaning that player utilities can be represented by
a small number of parameters. The number of outcomes in an arbitrary game is in the
worst case exponential in the number of players, so even storing the utilities would al-
ready require a prohibitive amount of storage. However, many games have additional
structure which allows the utilities to be succinctly represented. Indeed, most games
studied in the literature —including congestion, graphical, scheduling, and network
design games— have this property. Within all succinct games, we establish two main
results:

• When the structure of a game (e.g. the graph in a graphical game) is known,
we can find utilities that rationalize the equilibrium using a small LP. The LP is
polynomial rather than exponential in the number of players and their actions,
and hence can be solved in polynomial time using the ellipsoid method. We
discuss these results in Section 3.4.

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 42

• If the structure of a succinct game is unknown, inferring both utilities and the
correct game structure is NP-hard. We discuss these results in Section 3.5.

3.1.2 Related Work

Theoretical Computer Science. Kalyanaraman et al. studied the computational
complexity of rationalizing stable matchings [Kalyanaraman and Umans, 2008], and
network formation [Kalyanaraman and Umans, 2009]. In the latter case, they showed
that game attributes that are local to a player can be rationalized, while other, more
global, attributes cannot; this mirrors our observations on the hardness of inferring
utilities versus inferring game structure. The forward direction of our problem —
computing an equilibrium from utilities — is a central question within algorithmic
game theory. Computing Nash equilibria is intractable [Daskalakis et al., 2006] even
for 2 player games [Chen et al., 2009] (and therefore may be a bad description of hu-
man behavior); correlated equilibria, however, are easy to compute in succinct games
[Papadimitriou and Roughgarden, 2008] and can be found using simple iterative dy-
namics [Foster and Vohra, 1997, Hart and Mas-Colell, 2000]. Our results show that
while a Nash equilibrium is hard to compute, it is easy to rationalize. For correlated
equilibria, both computing and rationalizing it are feasible.

Economics. Literature on rationalizing agent behavior [Samuelson, 1948, Afriat,
1967, Varian, 1982] far predates computational concerns. The field of revealed prefer-
ence [Varian, 2006] studies an agent who buys different bundles of a good over time,
thus revealing more information about its utilities. These are characterized by sets
of linear inequalities, which become progressively more restrictive; we adopt this way
of characterizing agent utilities in our work as well, but in addition we prove that
solving the problem can be done in polynomial time.

Econometrics. Recently, Nekipelov et al. [2015] discussed inferring utilities of bid-
ders in online ad auctions, assuming bidders are using a no-regret algorithm for bid-
ding. While no-regret learning agents do converge to a correlated equilibrium, the
authors discuss a private-information game, rather than the full information games
we consider.

The identification problem in econometrics includes formulations for games, e.g.
[Bresnahan and Reiss, 1991, Lise, 2001, Bajari et al., 2010], but their goal is to
find a single set of utilities that best describes observed behavior. Since this is often
computationally infeasible, much of the literature proposes different estimators. From
a theoretical perspective, for the class of succinct games we show that finding a set
(not necessarily the most likely) of utilities is computationally feasible. Additionally

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 43

from a practical perspective, we uncover the entire space of valid utilities, which can
be used to indicate how confident we should be about assumptions on a model.

Inverse Reinforcement Learning. Algorithms that infer the payoff function of
an agent within a Markov decision process [Ng and Russell, 2000] are a key tool
in building helicopter autopilots [Abbeel and Ng, 2004]. Our work establishes an
analogous theory for multi-agent settings. Inverse reinforcement learning has also
been used to successfully predict driver behavior in a city [Waugh et al., 2013, Ziebart
et al., 2008]; but this work does not learn the utilities of players directly.

Inverse Optimization. Game theory can be interpreted as multi-player optimiza-
tion, with different agents maximizing their individual objective functions. Recover-
ing the objective function from a solution of a linear program can be solved using a
different linear program [Ahuja and Orlin, 2001]. Our work considers the analogous
inverse problem for multiple players and also solves it using an LP.

3.2 Preliminaries

In a normal-form game G , [(Ai)
n
i=1, (ui)

n
i=1], a player i ∈ {1, 2, ..., n} has mi actions

Ai , {ai1, ai2, ..., aimi
} and utilities ui ∈ Rm, where m =

∏n
i=1mi is the cardinality of

the joint-action space A , ×ni=1Ai. An a ∈ A is called a joint action of all the players
and let a−i be a with the action of player i removed. A mixed strategy of player i is a
probability distribution pi ∈ Rmi over the set of actions Ai. A correlated equilibrium
(CE) of G is a probability distribution p ∈ Rm over A that satisfies

∑

a−i

p(aij, a−i)u(aij, a−i) ≥
∑

a−i

p(aij, a−i)u(aik, a−i) (3.1)

for each player i and each pair of actions aij, a
i
k. This equation captures the idea that

no player wants to unilaterally deviate from their equilibrium strategy. Correlated
equilibria exist in every game, are easy to compute using a linear program, and arise
naturally from the repeated play of learning players [Foster and Vohra, 1997, Hart
and Mas-Colell, 2000].

A (mixed) Nash equilibrium is a correlated equilibrium p that is a product distri-
bution p(a) = p1(a1) × ... × pn(an), where the pi ∈ Rmi are mixed player strategies.
In a Nash equilibrium, each player chooses their own strategy (hence the product
form), while in a correlated equilibrium the players’ actions can be viewed as coming
from an outside mediator. A Nash equilibrium exists in every game, but is hard to
compute even in the 2-player setting [Chen et al., 2009].

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 44

3.3 Succinct Games

In general, the dimension m of player i’s utility ui is exponential in the number of
players: if each player has t actions, ui specifies a value for each of their tn possible
combinations. Therefore, we restrict our attention to games G that have a special
structure which allows the ui to be parametrized by a small number of parameters
v; such games are called succinct [Papadimitriou and Roughgarden, 2008].

A classical example of a succinct game is a graphical game, in which there is a
graph H with a node for every player, and the utility of a player depends only on
itself and the players on incident nodes in H. Let k be the number of neighbors of
i in H, then we only need to specify the utility of i for each combination of actions
of k + 1 players (rather than n). For bounded-degree graphs this greatly reduces the
number of parameter value. If the maximum degree in the graph is k and each player
has at most t actions, then the total number of utility values per player is at most
tk+1, which is independent of n.

Definition 3.1. A succinct game

G , [(Ai)
n
i=1, (vi)

n
i=1, (Fi)

n
i=1]

is a tuple of sets of player actions Ai, parameters vi ∈ Rd, and functions Fi : Rd×A→
R that compute the utility ui(a) = Fi(vi, a) of a joint action a.

We will further restrict our attention to succinct games in which the Fi have a
particular linear form. As we will soon show, almost every succinct game in the
literature is also linear. This definition will in turn enable a simple and unified
mathematical analysis across all succinct games.

Definition 3.2. A linear succinct game

G , [(Ai)
n
i=1, (vi)

n
i=1, (Oi)

n
i=1]

is a succinct game in which the utilities ui are specified by ui = Oivi, where Oi ∈
{0, 1}m×d is an outcome matrix mapping parameters into utilities.

Note that a linear succinct game is a special case of Definition 3.1 with Fi(vi, a) =
(Oivi)a, which is the component of Oiv corresponding to a.

The outcome matrix Oi has an intuitive interpretation. We can think of a set of d
distinct outcomes Oi that can affect the utility of player i. The parameters vi specify
a utility vi(o) for each outcome o ∈ Oi. When a joint action a occurs, it results in
the realization of a subset Oi(a) , {o : (Oi)a,o = 1} of the outcomes, specified by the
positions of the non-zero entries of matrix Oi. The utility ui(a) = (Oivi)a equals the

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 45

sum of valuations of the realized outcomes:

ui(a) =
∑

o∈Oi(a)

vi(o).

Graphical games, which we discussed above, are an example of a succinct game that is
linear. In a graphical game with an associated graph H, outcomes correspond to joint
actions aN(i) = (a(k))k∈N(i) by i and its neighbors in H. A joint-action a activates the
single outcome o that is associated to a aN(i) in which the actions are specified by a.
The matrix Oi is defined as

(Oi)a,aN(i)
=

{
1 if a, aN(i) agree on the actions of N(i)

0 otherwise.

3.3.1 Succinct Representations of Equilibria

Since there is an exponential number of joint actions, a correlated equilibrium p
(which is a distribution over joint actions) may require exponential space to write
down. To make sure that the input is polynomial in n, we require that p be repre-
sented as a polynomial mixture of product distributions (PMP) p =

∑K
k=1 qk, where

K is polynomial in n, qk(a) =
∏n

i=1 qik(ai) and qik is a distribution over Ai. Cor-
related equilibria in the form of a PMP exist in every game and can be computed
efficiently [Papadimitriou and Roughgarden, 2008]. A Nash equilibrium is already a
product distribution, so it is a PMP with K = 1.

3.3.2 What it Means to Rationalize Equilibria

Finding utilities consistent with an equilibrium p amounts to finding ui that satisfy
Equation 3.1 for each player i and for each pair of actions aij, a

i
k ∈ Ai. It is not hard

to show that Equation 3.1 can be written in matrix form as

pTCijkui ≥ 0, (3.2)

where Cijk is an m×m matrix that has the form

(Cijk)(arow,acol) =

−1 if arow = (aj, a
col
−i)

1 if arow = (ak, a
col
−i)

0 otherwise.

This formulation exposes intriguing symmetry between the equilibrium distribution
p and the utilities ui. By our earlier definitions, the utilities ui in a linear succinct

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 46

game can be written as ui = Oivi; this allows us to rewrite Equation 3.2 as

pTCijkOivi ≥ 0. (3.3)

While Cijk and Oi are exponentially large in n, their product is not, so in Section 3.4
we show that we can compute this product efficiently, without constructing Cijk and
Oi explicitly.

3.3.3 Non-Degeneracy Conditions

In general, inferring agent utilities is not a well-defined problem. For instance, Equa-
tion 3.1 is always satisfied by vi = 0 and remains invariant under scalar multiplication
αvi. To avoid such trivial solutions, we add an additional non-degeneracy condition
on the utilities.

Condition 1 (Non-degeneracy). A non-degenerate vector v ∈ Rd satisfies
∑d

k=1 vk =
1.

3.3.4 The Inverse Game Theory Problem

We are now ready to formalize two important inverse game theory problems. In the
first problem — Inverse-Utility — we observe L games between n players; the
structure of every game is known, but can vary. As a motivating example, consider n
drivers that play a congestion game each day over a network of roads and on certain
days some roads may be closed. Or consider L scheduling games where different
subsets of machines are available on each day. Our goal is to find valuations that
rationalize the observed equilibrium of each game.

Definition 3.3 (Inverse-Utility problem). Given:

1. A set of L partially observed succinct n-player games
Gl = [(Ail)

n
i=1, · , (Oil)

n
i=1], for l ∈ {1, 2, ..., L}.

2. A set of L correlated equilibria (pl)
L
l=1.

Determine succinct utilities (vi)
n
i=1 such that pl is a valid correlated equilibrium in

each Gl, in the sense that Equation 3.3 holds for all i and for all aij, a
i
k ∈ Ail. Alter-

natively, report that no such vi exist.

In the second problem — Inverse-Game — the players are again playing in L
games, but this time both the utilities and the structure of these games are unknown.

Definition 3.4 (Inverse-game problem). Given:

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 47

1. A set of L partially observed succinct n-player games Gl = [(Ail)
n
i=1, · , ·], for

l ∈ {1, 2, ..., L}.

2. A set of L correlated equilibria (pl)
m
l=1.

3. Candidate game structures (Sl)Ll=1, one Sl per game. Each Sl = (Slh)
p
h=1 con-

tains p candidate structures. A structure Slh = (Olhi)
n
i=1 specifies an outcome

matrix Olhi for each player i.

Determine succinct utilities (vi)
n
i=1 and a structure S∗l = (O∗li)

n
i=1 ∈ Sl for each game,

such that pl is a correlated equilibrium in each [(Ail)
n
i=1, (vi)

n
i=1, (O

∗
li)
n
i=1], in the sense

that
pTl CijkO

∗
ilvi ≥ 0

holds for all i, l and for all aij, a
i
k ∈ Ail. Alternatively, report that no such vi exist.

An example of this problem is when we observe L graphical games among n players
and each game has a different and unknown underlying graph chosen among a set of
candidates. We wish to infer both the common v and the graph of each game.

3.4 Learning Utilities in Succinct Games

In this section, we show how to solve Inverse-Utility in most succinct games. We
start by looking at a general linear succinct game, and derive a simple condition under
which Inverse-Utility can be solved. Then we consider specific cases of games (e.g.
graphical, congestion, network games), and show 1) that they are succinct and linear,
and 2) that they satisfy the previous condition.

3.4.1 General Linear Succinct Games

To solve Inverse-Utility, we need to find valuations vi that satisfy the equilibrium
condition (3.3) for every player i and every pair of actions aij, a

i
k. Notice that if we

can compute the product cTijk , pTCijkOi, then Equation 3.3 reduces to a simple
linear constraint cTijkvi ≤ 0 for vi. However, the dimensions of Cijk and Oi grow
exponentially with n; in order to multiply these objects we must therefore exploit
special problem structure. This structure exists in every game for which the following
simple condition holds.

Property 3.5. Let Ai(o) = {a : (Oi)a,o = 1} be the set of joint-actions that trigger
outcome o for player i. The equilibrium summation property holds if

∑

a−i:(aij ,a−i)∈Ai(o)

p(a−i) (3.4)

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 48

can be computed in polynomial time for any outcome o, product distribution p, and
action aij.

2

Lemma 3.6. Let G be a linear succinct game and let p be a PMP correlated equilib-
rium. Let cTijk , pTCijkOi be the constraint on vector vi in Equation 3.3 for a pair
of actions aik, a

i
j. If Property 3.5 holds, then the components of cTijkj can be computed

in polynomial time.

Proof. For greater clarity, we start with the formulation (3.1) of constraint (3.3):

∑

a−i

p(aij, a−i)u(aij, a−i) ≥
∑

a−i

p(aij, a−i)u(aik, a−i) (3.5)

We derive from (3.5) an expression for each component of cijk.
Recall that we associate the components of vi with a set of outcomes Oi. Let

Oi(a) = {o : O(a,o} = 1} denote the set of outcomes that are triggered by a; similarly,
let A(o) = {a : (Oi)a,o = 1} be the set of joint-actions that trigger an outcome o. The
left-hand side of (3.5) can be rewritten as:

∑

a-i

p(aij, a-i)ui(a
i
j, a-i) =

∑

a-i

p(aij, a-i)
∑

o∈Oi(aij ,a-i)

vi(o)

=
∑

o∈Oi

∑

a-i:
(aij ,a-i)∈Ai(o)

p(aij, a-i)vi(o)

=
∑

o∈Oi

vi(o)
∑

a-i:
(aij ,a-i)∈Ai(o)

p(aij, a-i)

Similarly, the right-hand side of (3.5) can be rewritten as

∑

a-i

p(aij, a-i)ui(a
i
k, a-i) =

∑

o∈Oi

vi(o)
∑

a-i:
(aik,a-i)∈Ai(o)

p(aij, a-i).

Substituting these two expressions into (3.5) and factoring out pi(a
i
j) (recall that p

2Property 3.5 is closely related to the polynomial expectation property (PEP) of [Papadimitriou
and Roughgarden, 2008] which states that the expected utility of a player in a succinct game should
be efficiently computable for a product distribution. In fact, the arguments we will use to show that
this property holds are inspired by arguments for establishing the PEP.

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 49

is a product distribution) allows us to rewrite (3.5) as:

∑

o∈Oi

vi(o)

∑

a-i:
(aij ,a-i)∈Ai(o)

p(a-i)−
∑

a-i:
(aik,a-i)∈Ai(o)

p(a-i)

 ≥ 0.

Notice that the expression in brackets corresponds to the entries of the vector cTijk.
If p is a product distribution, then by Property 3.5, we can compute these terms in
polynomial time. If p is a correlated equilibrium with a PMP representation

∑K
k=1 qk,

it is easy to see that by linearity of summation we can apply Property 3.5 K times
on each of the terms qk and sum the results. This establishes the lemma.

Lemma 3.6 suggests solving Inverse-utility in a game G by means of the fol-
lowing optimization problem.

minimize
n∑

i=1

f(vi) (3.6)

subject to cTijkvi ≥ 0 ∀i, j, k (3.7)

1Tvi = 1 ∀i (3.8)

Constraint (3.7) ensures that p is a valid equilibrium; by Lemma 3.6, we can compute
the components of cijk if Property 3.5 holds in G. Constaint (3.8) ensures that the vi
are non-degenerate. The objective function (3.6) selects a set of vi out of the polytope
of all valid utilities. It is possible to incorporate into this program additional prior
knowledge on the form of the utilities or on the coupling of valuations across players.

The objective function f may also incorporate prior knowledge, or it can serve
as a regularizer. For instance, we may choose f(vi) = ||vi||1 to encourage sparsity
and make the vi more interpretable. We may also use f to avoid degenerate vi’s; for
instance, in graphical games, cTijk1 = 0 and constant vi’s are a valid solution. We
may avoid this by adding the v ≥ 0 constraint (this is w.l.o.g. when cTijk1 = 0) and
by choosing f(v) =

∑
o∈Oi

v(o) log v(o) to maximize entropy.
Note that to simply find a valid vi, we may set f(vi) = 0 and find a feasible point

via linear programming. Moreover, if we observe L games, we simply combine the
constraints cijk into one program. Formally, this establishes the main lemma of this
section:

Lemma 3.7. The Inverse-game problem can be solved efficiently in any game where
Property 3.5 holds.

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 50

3.4.2 Inferring Utilities in Popular Succinct Sames

We now turn our attention to specific families of succinct games which represent the
majority of succinct games in the literature [Papadimitriou and Roughgarden, 2008].
We show that these games are linear and satisfy Property 3.5; so that, Inverse-
Utility can be solved using the optimization problem (3.6).

Graphical Games. In graphical games [Kearns et al., 2001], a graph H is defined
over the set of players; the utility of a player depends only on their actions and those
of its neighbors in the graph.

The outcomes for player i are associated to joint-actions aN(i) by the set containing
i and its neighbors N(i). A joint-action a triggers the outcome aN(i) specified by
actions of the players in N(i) in a. Formally,

(Oi)a,aN(i)
=

{
1 if a, aN(i) agree on the actions of N(i)

0 otherwise.

It is easy to verify that graphical games possess Property 3.5. Indeed, for any outcome
o = aN(i) and action aij, and letting akN(i) be the action of player k in aN(i), we have

∑

a-i:
(aij ,a-i)∈Ai(o)

p(a-i) =
∏

k∈N(i)
k 6=i

pk(a
k
N(i))

∏

k/∈N(i)
k 6=i

∑

ak∈Ak

pk(a
k)

=
∏

k∈N(i)
k 6=i

pk(a
k
N(i))

Polymatrix Games. In a polymatrix game [Howson Jr, 1972], each player plays
i in (n − 1) simultaneous 2-player games against each of the other players, and
utilities are summed across all these games. Formally, each joint-action triggers
n − 1 different outcomes for player i, one for each pair of actions (ai, aj) and thus
ui(a) =

∑
j 6=i vi(a

i, aj). The associated outcome matrix is

(Oi)a,(ai,aj) =

{
1 if aij and aii are played within a

0 otherwise.

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 51

To establish Property 3.5, observe that when o = (ai, aj) is one of the outcomes
affecting the utility of player i, we have

∑

a-i:
(aij ,a-i)∈Ai(o)

p(a-i) =
∑

a-i:aj∈a-i

p(a-i) = pj(a
j).

Hypergraphical Games. Hypergraphical games [Papadimitriou and Roughgar-
den, 2008] generalize polymatrix games to the case where the simultaneous games
involve potentially more than two players. Each instance of a hypergraphical game
is associated with a hypergraph H; the vertices of H correspond to players and a hy-
peredge e indicates that the players connected by e play together in a subgame; the
utility of player i is the sum its utilities in all the subgames in which it participates.

The fact that hypergraphical games are linear and possess Property 3.5 follows
easily from our discussion of polymatrix and graphical games.

Congestion Games. In congestion games [Rosenthal, 1973], players compete for
a set of resources E (e.g., roads in a city, modeled by edges in a graph); the players’
actions correspond to subsets ai ⊆ E of the resources. After all actions have been
played, each player i incurs a cost that equals the sum

∑
e∈ai de(le) of delays de(`e)

at each resource e, where `e(a) = |{i : e ∈ ai}| denotes the number of players using
that resource. In the example involving roads, delays indicate how long it takes to
traverse a road based on the congestion.

The outcomes for player i in congestion games are associated with a resource e
and the number L of players using that resource; we denote this by o = (e, L). A
joint action a activates the outcomes for the resources in ai that have `e(a) users.
The value v(o) of an outcome o = (e, L) corresponds to the delay experienced on e.
Formally, the outcome matrix for a congestion game has the form

(Oi)a,(e,L) =

{
1 if e ∈ ai and `e(a) = L

0 otherwise.

To establish Property 3.5, we need to show that the expression

∑

a-i:
(aij ,a-i)∈Ai(o)

p(a-i) =
∑

a−i:`(a−i)=L−1{e∈aij}

p(a−i)

can be computed for any outcome o = (e, L). Here, `(a−i) denotes the number of
players other than i using resource e and 1{e ∈ aij} equals one if e ∈ aij and zero

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 52

otherwise.
The expression PL(e) ,

∑
a−i:`(a−i)=L

p(a−i) can be computed via dynamic pro-

gramming. Indeed, observe that PL(e) equals P [
∑

j 6=iBj(p, e) = L], where Bj(p, e)
is a Bernoulli random variable whose probability of being one corresponds to the
probability Pj,e ,

∑
aj :e∈aj pj(a

j) of player j selecting an action that includes e. The
probabilities Pj,e are of course easy to compute. From the Pj,e it is easy to compute
the PL(e) using dynamic programming via the recursion:

PL(e) =
∑

j 6=i

P [Bj(p, e) = 1 ∩Bk(p, e) = 0 ∀k 6= i, j]PL−1(e).

Facility Location and Network Design Games. In facility location games
[Chun et al., 2004], players choose one of multiple facility locations, each with a
certain cost, and the cost of each facility is then divided by all the players who build
it. In network design games [Anshelevich et al., 2008], players choose paths in a graph
to connect their terminals, and the cost of each edge is shared among the players that
use it.

These two game types are special cases of congestion games with particular delay
functions. These can be handled through additional linear constraints. The earlier
discussion for congestion games extends easily to this setting to establish Property
3.5.

Scheduling Games. In a scheduling game [Fotakis et al., 2002, Papadimitriou and
Roughgarden, 2008], there are M machines and each player i schedules a job on a
machine ai; the job has a machine-dependent running time t(m, i). The player then
incurs a cost ti(a) =

∑
{j:aj=ai} t(a

i, j) that equals the sum of the running times of all
tasks on its machine.

Player outcomes o = (m, j) are associated with a machine m and the task of a
player j. The outcome matrix Oi has the form

(Oi)a,(m,j) =

{
1 if m ∈ ai and m ∈ aj
0 otherwise.

Property 3.5 can be established by adapting the dynamic programing argument used
for congestion games. Note also that congestion games require adding the constraint
vi(m, k) = vj(m, k) for all i and j in optimization problem (3.6). We summarize our
results in the following theorem.

Theorem 3.8. The Inverse-Utility problem can be solved in polynomial time for

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 53

the classes of succinct games defined above.

3.5 Learning the Structure of Succinct Games

Next, we consider the Inverse-game problem. Unlike in the previous section which
contained sweeping positive results, here we give a natural setting in which Inverse-
game is hard to solve, while the corresponding instance of Inverse-utility is easy.

We establish this result using the following additional non-degeneracy condition
on the player utilities.

Condition 2 (Non-indifference). Parameters vi satisfy the non-indifference condition
if there exist aij, a

i
k, a−i such that ui(a

i
j, a−i) 6= ui(a

i
k, a−i), where ui = Oivi

Theorem 3.9. Assuming Condition 2, it is NP-Hard to solve Inverse-game in the
setting of graphical games. However, the corresponding instance of Inverse-utility
is easy to solve.

Proof. We reduce from an instance of 3-sat in which for every variable appears in at
most m− 2 clauses.3 Given an instance of 3-sat with m clauses and n variables, we
construct an instance of Inverse-game as follows.

There are n + 1 players in each game j (for 1 ≤ j ≤ m) that are indexed by
i = 0, .., n. Player 0 has only one action: a(0). Every other player i ≥ 1 has 2 actions:
a
(i)
T and a

(i)
F .

Every game j is associated with a clause Cj. Game j has an unknown underlying
graph that is chosen in the set of graphs Sj = {Hj1, Hj2, Hj3}, where Hjk is the graph
consisting of only a single edge between player 0 and the player associated with the
variable that appears as the k-th literal in clause j. In other words, in each game,
only one of three possible players is connected to player 0 by an edge.

The utilities vi of each player i ≥ 1 are four-dimensional: they specify two values
vi(a

(i)
T), vi(a

(i)
F) when player i is not connected by an edge to player 0, and two values

vi(a
(i)
T ; a(0)), vi(a

(i)
F ; a(0)) when they are.

For every clause Cj, we also define an input equilibrium pj. Each pj is a pure
strategy Nash equilibrium and decomposes into a product pj =

∏n
i=1 pji. Since player

0 has only one action, pj0 is defined trivially. When variable xi appears in clause Cj,

we define the probability of player i ≥ 1 playing action a
(i)
T as

pji

(
a(i) = a

(i)
T

)
=

{
1 if xi is positively in clause Cj

0 if xi is negated in clause Cj,

3This is without loss of generality: if there is a variable that appears in all clauses, we can
construct two 2-sat instances which can be solved efficiently, if a variable appears in all but one
clause we can duplicate that clause.

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 54

and pji(a
(i) = a

(i)
F) = 1− pji(a(i) = a

(i)
T). When variable xi does not appear in clause

Cj, we set the strategy in one such game j (chosen arbitrarily) to be pji(a
(i) = a

(i)
T) =

1, and in the remaining games we set pji(a
(i) = a

(i)
F) = 1.

This completes the construction of the game. Next, we will introduce some no-
tation and make a few observations, before showing that 3-sat is encoded in the
constructed game.

Let ∆i(a
(i)
T → a

(i)
F) , vi(a

(i)
F , a

(0)) − vi(a
(i)
T , a

(0)) be the gain to player i ≥ 1 for

deviating from a
(i)
T to a

(i)
F when they are not connected to player 0, and let ∆i(a

(i)
T →

a
(i)
F ; a(0)) , vi(a

(i)
F , a

(0); a(0))− vi(a(i)T , a(0); a(0)) be the gain when they are.
Observe that the constraint of player i ≥ 1 when they are not connected to player

0 is of the form

pij(a
(i)
F)∆i(a

(i)
T → a

(i)
F) + pij(a

(i)
T)∆i(a

(i)
F → a

(i)
T) ≥ 0,

and the constraint when i and 0 are connected is similar.
Because each variable xi appear in at most m− 2 clauses, and because of how we

defined the probabilities, the following constraints act on ∆i(a
(i)
T → a

(i)
F): in one game

j1 such that xi is not in Cj we have ∆i(a
(i)
T → a

(i)
F) ≥ 0, and in all other such games

we have ∆i(a
(i)
T → a

(i)
F) ≤ 0. Because by definition ∆i(a

(i)
T → a

(i)
F) = −∆i(a

(i)
F → a

(i)
T),

we must have ∆i(a
(i)
T → a

(i)
F) = ∆i(a

(i)
F → a

(i)
T) = 0. Because of non-degeneracy

constraints on the utilities v, this implies that ∆i(a
(i)
F → a

(i)
T ; a(0)) 6= 0. This concludes

the observations.
We now show how 3-sat is encoded in the game we defined. Suppose that we have

an valid assignment of utilities and a structure; this leads to a satisfying assignment
in 3-sat: we simply set to be true in clause j the literal associated with the player
that is connected to player 0 in game j.

Clearly there will be one true literal per clause. We only need to show that
both the literal and its negation are never chosen. Suppose that was the case and
there were two clauses j1, j2 such that xi is chosen in j1 and x̄i is chosen in j2.
Then, player i’s constraint in j1 is ∆i(a

(i)
T → a

(i)
F ; a(0)) > 0 and in j2 it is ∆i(a

(i)
F →

a
(i)
T ; a(0)) = −∆i(a

(i)
T → a

(i)
F ; a(0)) > 0 and there cannot be utilities that satisfy both

these constraints.
Finally we show that a satisfying 3-sat assignment leads to valid utilities in

Inverse-game. First, set all utilities vi(a
(i)
T), vi(a

(i)
F) to zero. Set the utility of player

0 to one. Pick a true literal in each clause j and connect the corresponding player in
game j to player 0. We have to show that we can find valid utilities for all players.
Clearly, that is feasible for player 0. We claim that it is also possible for any player
i ≥ 1. First, set ∆i(a

(i)
T → a

(i)
F) = −∆i(a

(i)
F → a

(i)
T) = 0. Next, notice if xi is true,

then all constraints involving player i are ∆i(a
(i)
T → a

(i)
F ; a(0)) > 0), and if xi is false,

CHAPTER 3. LEARNING UTILITIES IN SUCCINCT GAMES 55

all constraints involving player i are ∆i(a
(i)
F → a

(i)
T ; a(0)) > 0. In both cases we can

find valid utilities to satisfy these constraints, and so Inverse-game can be solved.
Finally, observe that the corresponding instance of Inverse-utility (i.e., the one

in which the correct graph is pre-specified in advance) is easy to solve. The number
of players and actions is very small. Furthermore, it is easy to enforce Condition 2,
as there are only two actions for each player, and two values of ai−i to consider; the
condition can thus be enforced by adding a small (polynomial) number of constraints
to the problem.

Chapter 4

Anomaly Detection in a Stream

So far we have looked at situations in which more data leads to better results.1 How-
ever, in practical applications, if we observe more data, the probability of including
incorrect data also grows. For example, there could have been a mechanical failure
during writing, or the data could have been corrupted after it was stored. This is not
just true in game-theoretical applications, such as the ones described in the previous
two chapters, but more generally in any application that uses data from the real world
as input. Therefore, we phrase our results in this chapter quite generally, without
restriction to data that came from game-theoretical applications.

We focus on the anomaly detection problem for dynamic data streams. While
many algorithms have been proposed for this fundamental problem, there has been
significantly less progress in anomaly detection in the non-parametric setting, i.e,
where we do not have parametric models of the underlying distribution. As a re-
lated consequence performance of the most promising algorithms have not always
been studied rigorously, and therefore these algorithms can fail in fairly innocuous
instances. We view anomaly detection through the lens of random cut forests. We in-
vestigate a robust random cut data structure that can be used as a sketch or synopsis
of the input stream. We provide a plausible definition of non-parametric anomalies
based on the influence of an unseen point on the remainder of the data, i.e., the ex-
ternality imposed by that point. We show how the sketch can be efficiently updated
in a dynamic data stream. We demonstrate the viability of the algorithm on publicly
available real data.

1This chapter is based on joint work with Nina Mishra, Sudipto Guha and Roy Gourav and was
presented at ICML’16 [Guha et al., 2016]. It is currently implemented in Amazon Web Services.

56

CHAPTER 4. ANOMALY DETECTION IN A STREAM 57

4.1 Introduction

Anomaly detection is one of the cornerstone problems in data mining. Even though
the problem has been well studied over the last few decades, the emerging explosion
of data from online behavior and sensors connected to the internet of things leads
us to reconsider the problem. In most of these contexts the data is streaming and
well-understood prior models do not exist. Furthermore the input streams need not
be append only, there may be corrections, updates and a variety of other dynamic
changes. Two central questions in this regard are (1) how do we define anomalies?
and (2) what data structure do we use to efficiently detect anomalies over dynamic
data streams? In this chapter we initiate the formal study of both of these questions.
For (1), we view the problem from the perspective of model complexity and say that
a point is an anomaly if the complexity of the model increases substantially with the
inclusion of the point. The labeling of a point is data dependent and corresponds to
the externality imposed by the point in explaining the remainder of the data. We
extend this notion of externality to handle “outlier masking” that often arises from
duplicates and near duplicate records. Note that the notion of model complexity
has to be amenable to efficient computation in dynamic data streams. This relates
question (1) to question (2) which we discuss in greater detail next. However it
is worth noting that anomaly detection is not well understood even in the simpler
context of static batch processing and (2) remains relevant in the batch setting as
well.

For question (2), we explore a randomized approach, akin to [Liu et al., 2012], due
in part to the practical success reported in [Emmott et al., 2013]. Randomization is a
powerful tool and known to be valuable in supervised learning [Breiman, 2001]. But its
technical exploration in the context of anomaly detection is not well-understood and
the same comment applies to the algorithm put forth in [Liu et al., 2012]. Moreover
that algorithm has several limitations as described in Section 4.4.1. In particular, we
show that in the presence of irrelevant dimensions, crucial anomalies are missed. In
addition, it is unclear how to extend this work to a stream. Prior work attempted
solutions [Tan et al., 2011] that extend to streaming, however those were not found
to be effective [Emmott et al., 2013]. To address these limitations, we put forward
a sketch or synopsis termed robust random cut forest (RRCF) formally defined as
follows.

Definition 4.1. A robust random cut tree (RRCT) on point set S is generated
as follows:

1. Choose a random dimension proportional to `i∑
j `j

, where `i = maxx∈S xi −
minx∈Sxi.

2. Choose Xi ∼ Uniform[minx∈S xi, maxx∈S xi]

CHAPTER 4. ANOMALY DETECTION IN A STREAM 58

3. Let S1 = {x|x ∈ S, xi ≤ Xi} and S2 = S \ S1 and recurse on S1 and S2.

A robust random cut forest (RRCF) is a collection of independent RRCTs.

The approach in [Liu et al., 2012] differs from the above procedure in Step (1)
and chooses the dimension to cut uniformly at random. We discuss this algorithm in
more detail in Section 4.4.1 and provide extensive comparison.

Following question (2), we ask: Does the RRCF data structure contain sufficient
information that is independent of the specifics of the tree construction algorithm? In
this paper we prove that the RRCF data structure approximately preserves distances
in the following sense:

Theorem 4.2. Consider the algorithm in Definition 4.1. Let the weight of a node
in a tree be the corresponding sum of dimensions

∑
i `i. Given two points u, v ∈ S,

define the tree distance between u and v to be the weight of the least common ancestor
of u, v. Then the tree distance is always at least the Manhattan distance L1(u, v), and

in expectation, at most O
(
d log |S|

L1(u,v)

)
times L1(u, v).

Theorem 4.2 provides a low stretch distance preserving embedding, reminiscent of
the Johnson-Lindenstrauss Lemma [Johnson and Lindenstrauss, 1984] using random
projections for L2() distances (which has much better dependence on d). The theorem
is interesting because it implies that if a point is far from others (as is the case
with anomalies) that it will continue to be at least as far in a random cut tree in
expectation. The proof of Theorem 4.2 follows along the same lines of the proof of
approximating finite metric spaces by a collection of trees [Charikar et al., 1998], and
appears in the chapter appendix.

The theorem shows that if there is a lot of empty space around a point, i.e.,
γ = minv L1(u, v) is large, then we will isolate the point within O(d log |S|/γ) lev-
els from the root. Moreover since for any p ≥ 1, the p-normed distance satisfies
d1−1/pLp(u, v) ≥ L1(u, v) ≥ Lp(u, v) and therefore the early isolation applies to all
large Lp() distances simultaneously. This provides us a pointer towards the success of
the original isolation forest algorithm in low to moderate dimensional data, because
d is small and the probability of choosing a dimension is not as important if they
are small in number. Thus the RRCF ensemble contains sufficient information that
allows us to determine distance based anomalies, without focusing on the specifics of
the distance function. Moreover the distance scales are adjusted appropriately based
on the empty spaces between the points since the two bounding boxes may shrink
after the cut.

Suppose that we are interested in the sample maintenance problem of producing
a tree at random (with the correct probability) from T (S−{x}) or from T (S ∪{x}).
In this paper we prove that we can efficiently insert and delete points into a random
cut tree.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 59

Theorem 4.3 (Section 4.3). Given a tree T drawn according to T (S); if we delete
the node containing the isolated point x and its parent (adjusting the grandparent
accordingly, see Figure 4.2), then the resulting tree T ′ has the same probability as if
being drawn from T (S − {x}). Likewise, we can produce a tree T ′′ as if drawn at
random from T (S∪{x}) is time which is O(d) times the maximum depth of T , which
is typically sublinear in |T |.

Theorem 4.3 demonstrates an intuitively natural behavior when points are deleted
— as shown in the schematic in Figure 4.1. In effect, if we insert x, perform a few
more operations and then delete x, then not only do we preserve distributions but
the trees remain very close to each other — as if the insertion never happened. This
behavior is a classic desiderata of sketching algorithms.

x

a

b

c

(a) Before: T

a

bc

(b) After: T ′

Figure 4.1: Decremental maintenance of trees.

The natural behavior of deletions is not true if we do not choose the dimensions as
in Step (1) of RRCF construction. For example, if we choose the dimensions uniformly
at random as in [Liu et al., 2012], suppose we build a tree for (1, 0), (ε, ε), (0, 1) where
1 � ε > 0 and then delete (1, 0). The probability of getting a tree over the two
remaining points that uses a vertical separator is 3/4 − ε/2 and not 1/2 as desired.
The probability of getting that tree in the RRCF process (after applying Theorem 4.3)
is 1−ε, as desired. This natural behavior under deletions is also not true of most space
partitioning methods –such as quadtrees [Finkel and Bentley, 1974], kd-trees [Bentley,
1975], and R-trees [Guttman, 1984]. The dynamic maintenance of a distribution over
trees in a streaming setting is a novel contribution to the best of our knowledge and
as a consequence, we can efficiently maintain a tree over a sample of a stream:

Theorem 4.4. We can maintain a random tree over a sample S even as the sample
S is updated dynamically for streaming data using sublinear update time and O(d|S|)
space.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 60

We can now use reservoir sampling [Vitter, 1985] to maintain a uniform random
sample of size |S| or a recency-biased weighted random sample of size |S| [Efraimidis
and Spirakis, 2006], in space proportional to |S| on the fly. In effect, the random
sampling process is now orthogonal from the robust random cut forest construction.
For example to produce a sample of size ρ|S| for ρ < 1, in an uniform random
sampling we can perform straightforward rejection sampling; in the recency biased
sample in [Efraimidis and Spirakis, 2006] we need to delete the (1 − ρ)|S| lowest
priority points. This notion of downsampling via deletions is supported perfectly by
Theorem 4.3 – even for downsampling rates that are determined after the trees have
been constructed, during postprocessing. Thus,

Theorem 4.5. Given a tree T (S) for sample S, if there exists a procedure that down-
samples via deletion, then we have an algorithm that simultaneously provides us a
downsampled tree for every downsampling rate.

Theorems 4.4 and 4.5 taken together separate the notion of sampling from the
analysis task and therefore eliminates the need to fine tune the sample size as an initial
parameter. Moreover the dynamic maintenance of trees in Theorem 4.4 provides a
mechanism to answer counterfactual questions as given in Theorem 4.6.

Theorem 4.6. Given a tree T (S) for sample S, and a point p we can efficiently
compute a random tree in T (S ∪ {p}), and therefore answer questions such as: what
would have been the expected depth had p been included in the sample?

The ability to answer these counterfactual questions are critical to determining
anomalies. Intuitively, we label a point p as an anomaly when the joint distribution
of including the point is significantly different from the distribution that excludes it.
Theorem 4.6 allows us to efficiently (pretend) sketch the joint distribution including
the point p. However instead of measuring the effect of the sampled data points on p
to determine its label (as is measured by notions such as expected depth), it stands
to reason that we should measure the effect of p on the sampled points. This leads
us to the definition of anomalies used in this paper.

Roadmap: We discuss the decision procedure for defining anomalies in Section 4.2.
In Section 4.3 we give algorithms to dynamically update RRCF trees through inser-
tions and deletions. We discuss some of the less related unsupervised anomaly de-
tection in Section 4.4. Finally, we validate the algorithms on publicly available real
data demonstrating higher positive precision and positive recall in Section 4.5. We
conclude with open directions of research in Section 4.6.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 61

4.2 Defining Anomalies

Okke says: include the following paragraph? In a parametric setting, if we have a ←−
model of the distribution then one classic statistical approach can therefore be to use
notions of divergences such as Kullback-Leibler or other Bregman divergences to mea-
sure the “surprise” generated by including a query point to a sample of data [Amari
and Nagaoka, 2007]. However this classic approach is difficult to pursue unless we
have large sample sizes to represent the density of multidimensional distributions. The
classical approach corresponds to modeling the decision of including the observation
versus the decision of not including the observation, in other words the externality
imposed by the observation on the remainder of the data points. The task is there-
fore to define a non-parametric notion of externality. However externality alone will
unlikely be the complete story, because for a typical (not computationally powerful)
person to agree on an outlier, the person needs to find the outlier first. Consider the
hypotheses:

(a) An anomaly is often easy to describe – consider Waldo wearing a red fedora in a
sea of dark felt hats. While it may be difficult for us to find Waldo in a crowd, if
we could forget the faces and see the color (as is the case when Waldo is revealed
by someone else) then the recognition of the anomaly is fairly simple.

(b) An anomaly makes it harder to describe the remainder of the data – if Waldo
were not wearing the red fedora, we may not have admitted the possibility that
hats can be colored. In essence, an anomaly displaces our attention from the
normal observation to this new one.

The fundamental task is therefore to quantify the shift in attention. Suppose that
we assign left branches the bit 0 and right branches the bit 1 in a tree in a random
cut forest. Now consider the bits that specify a point (excluding the bits that are
required to store the attribute values of the point itself). This defines the complexity
of a random model MT which in our case corresponds to a tree T that fits the initial
data. Therefore the number of bits required to express a point corresponds to its
depth in the tree.

Given a set of points Z and a point y ∈ Z let f(y, Z, T) be the depth of y in tree
T . Consider now the tree produced by deleting x as in Theorem 4.3 as T (Z − {x}).
Note that given T and x the tree T (Z −{x}) is uniquely2 determined. Let the depth
of y in T (Z − {x}) be f(y, Z − {x}, T) (we drop the qualification of the tree in this
notation since it is uniquely defined).

2The converse is not true, this is a many-to-one mapping.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 62

x

a

b

c

10

10

q0, . . . , qr

(a) Tree T (Z)

a

bc

10

q0, . . . , qr

(b) Tree T (Z − {x})

Figure 4.2: A correspondence of trees

Consider now a point y in the subtree c in Figure 4.2a. Its bit representation in T
would be q0, . . . , qr, 0, 0, The model complexity, denoted as |M(T)| the number of
bits required to write down the description of all points y in tree T therefore will be
|M(T)| = ∑y∈Z f(y, Z, T). If we were to remove x then the new model complexity is

|M(T ′)| =
∑

y∈Z−{x}

f(y, Z − {x}, T ′)

where T ′ = T (Z−{x}) is a tree over Z−{x}. Now consider the expected change
in model complexity under a random model.

ET [|M(T)|]− ET (Z−{x}) [|M(T (Z − {x})|]
=
∑

T

∑

y∈Z

Pr [T] f(y, Z, T)

−
∑

T (Z−{x})

∑

y∈Z−{x}

Pr [T − {x}] f(y, Z − {x}, T)

However since we have a many to one mapping from T (Z) to T (Z − {x}) as a
consequence of Theorem 4.3, we can express the second sum over T (Z) instead of
T ′ = T (Z − {x}) and we get

CHAPTER 4. ANOMALY DETECTION IN A STREAM 63

ET (Z) [|M(T)|]− ET (Z−{x}) [|M(T (Z − {x})|]

=
∑

T

∑

y∈Z−{x}

Pr [T]

(
f(y, Z, T)− f(y, Z − {x}, T ′)

)

+
∑

T

Pr [T] f(x, Z, T) (4.1)

Definition 4.7. Define the bit-displacement or displacement of a point x to be the
increase in the model complexity of all other points, i.e., for a set Z, to capture the
externality introduced by x, define, where T ′ = T (Z − {x}),

Disp(x, Z) =
∑

T,y∈Z−{x}

Pr [T]

(
f(y, Z, T)− f(y, Z − {x}, T ′)

)

Note the total change in model complexity is Disp(x, Z)+g(x, Z) where g(x, Z) =∑
T Pr [T] f(x, Z, T) is the expected depth of the point x in a random model. Instead

of postulating that anomalies correspond to large g(), we focus on larger values of
Disp(). The name displacement is clearer based on this lemma:

Lemma 4.8. The expected displacement caused by a point x is the expected number
of points in the sibling node of the leaf node containing x, when the partitioning is
done according to the algorithm in Definition 4.1.

Proof. In the absence of x, (in Figure 4.2b) the representation would be q0, . . . , qr, 0, . . .,
in other words we would need 1 fewer bit to represent the point p. Therefore:

f(y, Z, T)− f(y, Z − {x}, T) =

{
1 y ∈ sibling c of x
0 otherwise

The lemma follows.

Uniform Random Samples. Since the dataset Z is often large, it is unrealistic
to have trees built over the entire dataset. However if we choose an uniform random
sample S of size k and Disp(x, Z) is large then,

ES⊆Z,|S|=k [Disp(x, S)] ≈ (k/|Z|)Disp(x, Z)

with high probability. This is also a consequence of Theorem 4.5 and uniform
random sampling from the set of nodes which are in the sibling node of the leaf node
containing x.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 64

Shortcomings. While Definition 4.7 points towards a possible definition of an
anomaly, the definition as stated are not robust to duplicates or near-duplicates.
Consider one dense cluster and a point p far from away from the cluster. The dis-
placement of p will be large. But if there is a point q very close to p, then q’s
displacement in the presence of p is small. This phenomenon is known as outlier
masking. Duplicates and near duplicates are natural and therefore the semantics of
any anomaly detection algorithm has to accommodate them.

Duplicate Resilience. Consider the notion that Waldo has a few friends who help
him hide – these friends are colluders; and if we were to get rid of all the colluders
then the description changes significantly. Specifically, instead of just removing the
point x we remove a set C with x ∈ C. Analogous to Equation (4.1) ,

ET (Z) [|M(T)|]− ET (Z−C) [|M(T (Z − C)|]
= Disp(C,Z) +

∑

T

∑

y∈C

Pr [T] f(y, Z, T) (4.2)

where Disp(C,Z) is the notion of displacement extended to subsets denoted as,
where T ′′ = T (Z − C),

∑

T,y∈Z−C

Pr [T]

(
f(y, Z, T)− f(y, Z − C, T ′′)

)
(4.3)

Absent of any domain knowledge it appears that the displacement should be
attributed equally to all the points in C. Therefore a natural choice of determining C
seems to be maxDisp(C,Z)/|C| subject to x ∈ C ⊆ Z. However two problems arise.
First there are too many subsets C, and second, in a streaming setting it is likely we
would be using a sample S ⊂ Z. Therefore the supposedly natural choice does not
extend to samples. To avoid both issues, we allow the choice of C to be different for
different samples S; in effect we are allowing Waldo to collude with different members
in different tests! This motivates the following:

Definition 4.9. The Collusive Displacement of x denoted by CoDisp(x, Z, |S|)
of a point x is defined as

E
S⊆Z,T

[
max
x∈C⊆S

1

|C|
∑

y∈S−C

(
f(y, S, T)− f(y, S − C, T ′′)

)]

Lemma 4.10. CoDisp(x, Z, |S|) can be estimated efficiently.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 65

Proof. Observe that following the logic of Lemma 4.8, the difference

f(y, S, T)− f(y, S − C, T)

is nonzero for y ∈ Z −C if and only iff we delete all the elements in a sibling subtree
containing y. For example in Figure 4.2a, if |b| is large, then the collusive displacement
will be large only if we delete all the nodes in c along with x. Moreover to achieve any
nonzero displacement we have to simultaneously delete all copies of x; and the result
will scale down based on the number of duplicates. Observe that a consequence, given
a T , we can compute

max
x∈C⊆S

1

|C|
∑

y∈S−C

(
f(y, S, T)− f(y, S − C, T)

)

optimally by considering only the subtrees in the leaf to root path defined by x.

While CoDisp(x, Z, |S|) is dependent on |S|, the dependence is not severe. We en-
vision using the largest sample size which is permitted under the resource constraints.
We arrive at the central characterization we use in this paper:

Definition 4.11. Outliers correspond to large CoDisp().

4.3 Forest Maintenance on a Stream

In this section we discuss how Robust Random Cut Trees can be dynamically main-
tained. In the following, let RRCF (S) be a the distribution over trees by running
Definition 4.1 on S. Consider the following operations:

(i) Insertion: Given T drawn from distribution RRCF (S) and p 6∈ S produce a
T ′ drawn from RRCF (S ∪ {p}).

(ii) Deletion: Given T drawn from distribution RRCF (S) and p ∈ S produce a
T ′ drawn from RRCF (S − {p}).

We need the following simple observation.

Observation 4.12. Separating a point set S and p using an axis-parallel cut is pos-
sible if and only if it is possible to separate the minimal axis-aligned bounding box
B(S) and p using an axis-parallel cut.

The next lemma provides a structural property about RRCF trees. We are interest
in incremental updates with as few changes as possible to a set of trees. Note that

CHAPTER 4. ANOMALY DETECTION IN A STREAM 66

given a specific tree we have two exhaustive cases, that (i) the new point which is
to be deleted (respectively inserted) is not separated by the first cut and (ii) the
new point is deleted (respective inserted) is separated by the first cut. Lemma 4.13
addresses these for collections of trees (not just a single tree) that satisfy (i) and (ii)
respectively.

Lemma 4.13. Given point p and set of points S with an axis parallel minimal bound-
ing box B(S) such that p 6∈ B:

(i) For any dimension i, the probability of choosing an axis parallel cut in a dimen-
sion i that splits S using the weighted isolation forest algorithm is exactly the
same as the conditional probability of choosing an axis parallel cut that splits
S ∪ {p} in dimension i, conditioned on not isolating p from all points of S.

(ii) Given a random tree of RRCF (S ∪ {p}), conditioned on the fact the first cut
isolates p from all points of S, the remainder of the tree is a random tree in
RRCF (S).

Proof. Consider the first part. Let the length of the minimum bounding box of S
in dimension i be `i. Let the length of the minimum bounding box of S ∪ {p} in
dimension i be `′i. Thus the probability (density) of choosing a cut C in dimension i
that splits S is

1

`i

`i∑
i `i

where the first term is the probability density conditioned on the dimension and the
second term is the probability of choosing dimension i. The probability density of
achieving the same cut in constructing a weighted isolation forest of S ∪ {p} condi-
tioned on not isolating p and S is

1

`i
Pr [Choosing dimension i|not isolating p and S]

Probability of choosing dimension i and not isolating p and S is `i/
∑

i `
′
i. There-

fore

Pr [Choosing dimension i|not isolating p and S]

=
Pr [Choosing dimension i and not isolating p and S]

Pr [not isolating p and S]

=
`i/
∑

i `
′
i∑

i `i/
∑

i `
′
i

=
`i∑
i `i

CHAPTER 4. ANOMALY DETECTION IN A STREAM 67

The last part follows from the observation that the probability of not isolating p
and S is

∑
i `i/

∑
i `
′
i. This proves part (i). Note that part (ii) follows from construc-

tion.

4.3.1 Deletion of Points

We begin with Algorithm 4 which is deceptively simple.

Algorithm 4 Algorithm ForgetPoint.

1: Find the node v in the tree where p is isolated in T .
2: Let u be the sibling of v. Delete the parent of v (and of u) and replace that parent

with u (i.e., we short circuit the path from u to the root).
3: Update all bounding boxes starting from u’s (new) parent upwards – this state is

not necessary for deletions, but is useful for insertions.
4: Return the modified tree T ′.

We now indicate how the above algorithm follows from Lemma 4.13.

Lemma 4.14. If T were drawn from the distribution RRCF (S) then Algorithm 4 pro-
duces a tree T ′ which is drawn at random from the probability distribution RRCF (S−
{p}).

Proof. Given T was drawn from RRCF (S) consider the random forest algorithm
that would have produced this tree. Consider also the random forest algorithm as
it produces T ′. We will stochastically couple the decisions of the split operation –
mirror the same split in T ′ as in T [Lindvall, 1992]. Even though the splits across
the two trees are correlated, if we consider only T or T ′, it would appear that the
respective tree was produced with the right distribution. Of course the mirroring will
not always be obvious, but we address that below. Initially we have a set S ′ = S.
Consider the cases (a)–(b) below:

(a) Suppose that we choose the dimension i in splitting T and the point p does not
lie on the bounding box of S ′ in dimension i. In this case the presence or absence
of the point p does not affect the distribution of cuts are the same irrespective
of the point set S ′ or S ′ − {p}. The construction of T ′ therefore can choose the
same dimension i and the same cut as in T , and that could correspond to be a
valid step with the correct probability. Note that after the cut, p can belong to
only one side ,say S ′′. We will set S ′ = S ′′ and recurse. Note that we can use the
same subtree (as in T) for the subset S ′ − S ′′ since there were no change to the
point set. The construction of T ′ can completely mirror T for these subsets, and
the construction will preserve the correct probabilities.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 68

(b) Otherwise, we choose dimension i in splitting T and point p lies on the bounding
box of S ′ in dimension i. We now have two cases.

(i) Point p is separated from rest of S ′. In this case T produces a sibling tree
T (u) starting at node u which is the sibling node of node v containing the
isolated point p. But then in T ′ we do not have p, and T (u) is a random
tree from RRCF (S ′−{p}) and the construction is correct using part (ii) of
Lemma 4.13.

(ii) Point p is not separated from S ′. By Lemma 4.13, conditioned on the fact
that p is not separated from S ′ we are choosing a random cut which separates
S ′−{p} along a chosen dimension i. This is therefore an appropriate choice
for T ′ using part (i) of Lemma 4.13 and we choose the same cut in T ′. Again
we have two subsets, and in T , p belongs to only one side. We recurse on
that side – for the other side the construction of T, T ′ can be identical since
they have the same set of points.

The above cases are mutually exclusive and exhaustive. This proves the Lemma.

The next lemma is immediate.

Lemma 4.15. The deletion operation can be performed in time O(d) times the depth
of point p.

Observe that if we delete a random point from the tree, then the running time
of the deletion operation is O(d) times the expected depth of any point. Likewise if
we delete points whose depth is shallower than most points in the tree then we can
improve the running time of Lemma 4.15.

4.3.2 Insertion of Points

Given a tree T from RRCF (S) we produce a tree T ′ from the distribution RRCF (S∪
{p}). The algorithm is provided in Algorithm 5. Once again we will couple the
decisions that is mirror the same split in T ′ as in T , as long as p is not outside a
bounding box in T . Up to this point we are performing the same steps as in the
construction of the forest on S ∪ {p}, with the same probability.

Lemma 4.16. If T were drawn from the distribution RRCF (S) then Algorithm 4 pro-
duces a tree T ′ which is drawn at random from the probability distribution RRCF (S∪
{p}).

Proof. We proceed in a manner similar to the proof of Lemma 4.14 — however instead
of using tree T to define the splits for T ′, we will first make a decision about T ′ and

CHAPTER 4. ANOMALY DETECTION IN A STREAM 69

Algorithm 5 Algorithm InsertPoint.

1: We have a set of points S ′ and a tree T (S ′). We want to insert p and produce
tree T ′(S ′ ∪ {p}).

2: If S ′ = ∅ then we return a node containing the single node p.
3: Otherwise S ′ has a bounding box B(S ′) = [x`1, x

h
1] × [x`2, x

h
2] × · · · [x`d, xhd]. Let

x`i ≤ xhi for all i.
4: For all i let x̂`i = min{pi, x`i} and x̂hi = max{xhi , pi}.
5: Choose a random number r ∈ [0,

∑
i(x̂

h
i − x̂`i)].

6: This r corresponds to a specific choice of a cut in the construction of RRCF (S ′∪
{p}). For instance we can compute arg min{j|∑j

i=1(x̂
h
i − x̂`i) ≥ r} and the cut

corresponds to choosing x̂`j +
∑j

i=1(x̂
h
i − x̂`i)− r in dimension j.

7: If this cut separates S ′ and p (i.e., is not in the interval [x`j, x
h
j]) then and we can

use this as the first cut for T ′(S ′ ∪ {p}). We create a node – one side of the cut
is p and the other side of the node is the tree T (S ′).

8: If this cut does not separate S ′ and p then we throw away the cut! We choose
the exact same dimension as T (S ′) in T ′(S ′ ∪ {p}) and the exact same value of
the cut chosen by T (S ′) and perform the split. The point p goes to one of the
sides, say with subset S ′′. We repeat this procedure with a smaller bounding box
B(S ′′) of S ′′. For the other side we use the same subtree as in T (S ′).

9: In either case we update the bounding box of T ′.

then mirror T . Suppose that we have currently the set of nodes S ′. Note that the
case of S ′ = ∅ is trivial. Therefore assume S ′ 6= ∅ and we are given a tree T (S ′) from
RRCF (S ′).

(a) If we decide to separate p and S ′ then Step 6 in Algorithm 5 generates such a cut.
Now after the cut, we observe that T (S ′) is already a random tree in RRCF (S ′)
and we can simply use T (S ′) to define T ′.

(b) If we decide to not separate p and S ′ then using part (i) of Lemma 4.13, we can
choose any cut that splits the bounding box B(S ′). Note that the first cut in
T (S ′) is exactly such a cut chosen with the correct distribution. Therefore we can
use the same cut in T ′ in this case. Note that we now have two sides and p only
affects one side – we can use the same subtree as in T (S ′) for the side that does
not contain p. We the side S ′′ that contains p. Note that we recursively maintain
the property that we have a random tree T (S ′′) from RRCF (S ′′).

The above steps are mutually exclusive and exhaustive. This proves the Lemma.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 70

4.4 Isolation Forest and Other Related Work

4.4.1 The Isolation Forest Algorithm

Recall that the isolation forest algorithm uses an ensemble of trees similar to those
constructed in Definition 4.1, with the modification that the dimension to cut is
chosen uniformly at random. Given a new point p, that algorithm follows the cuts
and compute the average depth of the point across a collection of trees. The point
is labeled an anomaly if the score exceeds a threshold; which corresponds to average
depth being small compared to log |S| where S is suitably sized sample of the data.

The advantage of the isolation forest is that different dimensions are treated in-
dependently and the algorithm is invariant to scaling different dimensions differently.
However consider the following example.

Example 4.17 (Irrelevant Dimensions.). Suppose we have two clusters of 1000
points each corresponding to x1 = ±5 in the first dimension, and xi = 0 in all
remaining dimensions i. In all coordinates (including x1) we add a random Gaussian
noise with mean 0 and standard deviation 0.01 simulating white noise. Now consider
10 points with x1 = 0 and the same behavior in all the other coordinates. When
d = 2 the small cluster of points in the center is easily separated by the isolation
forest algorithm which treats the dimensions independently. When d = 30 the vast
majority of cuts are in irrelevant dimensions, and the algorithm fails (when run on
entire data) as shown in Figure 4.1a for a single trial over 100 trees. For 10 trials
(for the same data set), the algorithm determined that 430, 270, 147, 220, 48, 244,
193,158, 250 and 103 points had the same of higher anomaly score than the point with
the highest anomaly score among the 10 points (the identity of this point varied across
the trials).

In essence, the algorithm either produces too many false alarms or does not have
good recall. Note that AUC is not a relevant measure here since the class sizes between
anomalous and non-anomalous are skewed, 1 : 200. The results were consistent
across multiple data sets generated according to the example. Figure 4.3b shows
a corresponding single trial using CoDisp(). The CoDisp() measure places the
10 points in the largest 20 values most of the time. Example 1 shows that scale
independence therefore can be negative feature if distance is a meaningful concept
in the dataset. However in many tasks that depend on detecting anomalies, the
relevance of different dimensions is often unknown. The question of determining the
appropriate scale of measurement often has far reaching consequences in data analysis.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 71

-6 -4 -2 0 2 4 6 -0.1
 0

 0.1

-0.1

 0

 0.1

 0.1

 0.2

 0.3

(a) Performance of Isolation Forest [Liu et al., 2012]. Note that the score never exceeds
0.3 whereas a score of 0.5 corresponds to an outlier. Note also that the two clusters are not
distinguishable from the 10 points near origin outliers in depth values (color).

-6 -4 -2 0 2 4 6 -0.1

 0

 0.1

-0.1

 0

 0.1

 0

 50

 100

 150

 200

(b) Performance of CoDisp(x, Z, |Z|). Observe that the clusters and outliers are separated;
some of the extremal points in the clusters have the same (collusive) displacement as the
10 points near the origin, which is expected.

Figure 4.3: The result of running isolation forest and CoDisp() on the input in
Example 4.17 for d = 30.

A modified version of the above example also is helpful in arguing why depth of
a point is a not always helpful in characterizing anomalies, even in low dimensions.
Consider,

Example 4.18 (Held Out Data.). Consider the same dataset as in Example 4.17
in d = 2 dimensions. Suppose that we have only sampled 100 points and all the
samples correspond to x1 = ±5. Suppose we now want to evaluate: is the point (0, 0)
an anomaly? Based on the samples the natural answer is yes. The scoring mechanism
of isolation forest algorithm fails because once the two clusters are separated, this new
point (0, 0) behaves as a point in one of the two other clusters! The situation however
changes completely if we include (0, 0) to build the trees.

The example explains why the isolation forest algorithm is sensitive to sample size.
However most anomalies are not usually seen in samples – anomaly detection algo-
rithms should be measured on held out data. Note that Theorem 4.6 can efficiently
solve the issue raised in Example 4.18 by answering the counterfactual question of
what is the expected height has we observed (0, 0) in the sample (without rebuilding
the trees). However expected depth seems to generate more false alarms, and we
investigate this further in the supplementary material of [Guha et al., 2016].

CHAPTER 4. ANOMALY DETECTION IN A STREAM 72

4.4.2 Other Related Work

The problem of (unsupervised) outlier detection has a rich literature. We survey
some of the work here; for an extensive survey see [Aggarwal, 2013, Chandola et al.,
2009] and references therein. We discuss some of techniques which are unrelated to
the concepts already discussed.

Perhaps the most obvious definition of an anomaly is density based outlier detec-
tion, which posits that a low-probability events are likely anomalous. This has led to
different approaches based on estimating the density of data sets. For points in Rn,
Knorr and Ng [1997, 1998, 1999], Knorr et al. [2000] estimate the density by looking
at the number of points that are within a ball of radius d of a given data point. The
lower this number, the more anomalous the data point is. This approach may break
down when different parts of the domain have different scales. To remedy this, there
a methods [Breunig et al., 1999, 2000] that look at the density around a data point
compared to its neighborhood. A variation of the previous approach is to consider a
fixed k number of nearest neighbors and base the anomaly score on this [Eskin et al.,
2002, Zhang and Wang, 2006]. Here the anomaly score is monotonically increasing in
the distances to the k nearest-neighbors. Taking the idea of density one step further,
some authors have looked at finding structure in the data through clustering. The
intuition here is that for points that cannot easily be assigned to a cluster, there
is no good explanation for their existence. There are several clustering algorithms
that work well to cluster part of the data, such as DBSCAN [Ester et al., 1996] and
STREAM [Guha et al., 2003]. Additionally, FindOut [Yu et al., 2002] removes points
it cannot cluster, and then recurses. Finally the notion of sketching used in this paper
is orthogonal to the notion used in [Huang and Kasiviswanathan, 2015] which uses
streaming low rank approximation of the data.

4.5 Experiments

In the experiments, we focus on datasets where anomalies are visual, verifiable and
interpretable. We begin with a synthetic dataset that captures the classic diurnal
rhythm of human activity. We then move to a real dataset reflecting taxi ridership
in New York City. In both cases, we compare the performance of RRCF with IF.

A technique that turns out to be useful for detecting anomalies in streams is
shingling. If a shingle of size 4 is passed over a stream, the first 4 values of the stream
received at time t1, t2, t3, t4 are treated as a 4-dimensional point. Then, at time t5,
the values at time t2, t3, t4, t5 are treated as as the next four-dimensional point. The
window slides over one unit at each time step. A shingle encapsulates a typical shape
of a curve – a departure from a typical shape could be an anomaly.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 73

4.5.1 Synthetic Data

Many real datasets implicitly reflect human circadian rhythms. For example, an
eCommerce site may monitor the number of orders it receives per hour. Search engines
may monitor search queries or ad clicks per minute. Content delivery networks may
monitor requests per minute. In these cases, there is a natural tendency to expect
higher values during the day and lower values at night. An anomaly may reflect an
unexpected dip or spike in activity.

In order to test our algorithm, we synthetically generated a sine wave where a dip
is artificially injected around timestamp 500 that lasts for 20 time units. The goal is
to determine if our anomaly detection algorithm can spot the beginning and end of
the injected anomaly. The experiments were run with a shingle of length four, and
one hundred trees in the forest, where each tree is constructed with a uniform random
reservoir sample of 256 points. We treat the dataset as a stream, scoring a new point
at time t+ 1 with the data structure built up until time t.

0.5	

0.55	

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	 14
	

27
	

40
	

53
	

66
	

79
	

92
	

10
5	

11
8	

13
1	

14
4	

15
7	

17
0	

18
3	

19
6	

20
9	

22
2	

23
5	

24
8	

26
1	

27
4	

28
7	

30
0	

31
3	

32
6	

33
9	

35
2	

36
5	

37
8	

39
1	

40
4	

41
7	

43
0	

44
3	

45
6	

46
9	

48
2	

49
5	

50
8	

52
1	

53
4	

54
7	

56
0	

57
3	

58
6	

59
9	

61
2	

62
5	

63
8	

65
1	

66
4	

67
7	

69
0	

70
3	

71
6	

72
9	

!me	

Sine	wave	with	injected	anomaly	 Isola?on	forest	

(a) The bottom red curve reflects the anomaly score produced by IF. Note that the start
of the anomaly is missed.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	 15
	

29
	

43
	

57
	

71
	

85
	

99
	

11
3	

12
7	

14
1	

15
5	

16
9	

18
3	

19
7	

21
1	

22
5	

23
9	

25
3	

26
7	

28
1	

29
5	

30
9	

32
3	

33
7	

35
1	

36
5	

37
9	

39
3	

40
7	

42
1	

43
5	

44
9	

46
3	

47
7	

49
1	

50
5	

51
9	

53
3	

54
7	

56
1	

57
5	

58
9	

60
3	

61
7	

63
1	

64
5	

65
9	

67
3	

68
7	

70
1	

71
5	

72
9	

!me	

Sine	wave	with	injected	anomaly	 coDisplacement	

(b) The bottom red curve represents the anomaly score produced by RRCF. Both the
beginning and end of the anomaly are caught.

Figure 4.4: The top blue curve represents a sine wave with an artificially injected
anomaly. The bottom red curve shows the anomaly score over time.

CHAPTER 4. ANOMALY DETECTION IN A STREAM 74

Table 4.1: Comparison of Baseline Isolation Forest to proposed Robust Random Cut
Forest

Method Sample Positive Positive Negative Negative Accuracy AUC
Size Precision Recall Precision Recall

IF 256 0.42 (0.05) 0.37 (0.02) 0.96 (0.00) 0.97 (0.01) 0.93 (0.01) 0.83 (0.01)
RRCF 256 0.87 (0.02) 0.44 (0.04) 0.97 (0.00) 1.00 (0.00) 0.96 (0.00) 0.86 (0.00)
IF 512 0.48 (0.05) 0.37 (0.01) 0.97 (0.01) 0.96 (0.00) 0.94 (0.00) 0.86 (0.00)
RRCF 512 0.84 (0.04) 0.50 (0.03) 0.99 (0.00) 0.97 (0.00) 0.96 (0.00) 0.89 (0.00)
IF 1024 0.51 (0.03) 0.37 (0.01) 0.96 (0.00) 0.98 (0.00) 0.94 (0.00) 0.87 (0.00)
RRCF 1024 0.77 (0.03) 0.57 (0.02) 0.97 (0.00) 0.99 (0.00) 0.96 (0.00) 0.90 (0.00)

Table 4.2: Segment-Level Metrics and Precision@K

Method Segment Segment Time to Time to Prec@5 Prec@10 Prec@15 Prec@20
Precision Recall Detect Onset Detect End

IF 0.40 (0.09) 0.80 (0.09) 22.68 (3.05) 23.30 (1.54) 0.52 (0.10) 0.50 (0.00) 0.34 (0.02) 0.28 (0.03)
RRCF 0.65 (0.14) 0.80 (0.00) 13.53 (2.05) 10.85 (3.89) 0.58 (0.06) 0.49 (0.03) 0.39 (0.02) 0.30 (0.00)

In Figure 4.4a, we show the result of running IF on the sine wave. For anomalies,
detecting the onset is critical – and even more important than detecting the end of
an anomaly. Note that IF misses the start of the anomaly at time 500. The end of
the anomaly is detected, however, by then the system has come back to its normal
state – it is not useful to fire an alarm once the anomaly has ended. Next, consider
Figure 4.4b which shows the result of running RRCF on the same sine wave. Observe
that the two highest scoring moments in the stream are the end and the beginning
of the anomaly. The anomaly is successfully detected by RRCF. While the result of
only a single run is shown, the experiment was repeated many times and the picture
shown in Figure 4.4 is consistent across all runs.

4.5.2 Real Life Data: NYC Taxicabs

Next we conduct a streaming experiment using taxi ridership data from the NYC Taxi
Commission3. We consider a stream of the total number of passengers aggregated over
a 30 minute time window. Data is collected over a 7-month time period from 7/14
– 1/15. Note while this is a 1-dimensional datasets, we treat it as a 48-dimensional
data set where each point in the stream is represented by a sliding window or shingle
of the last day of data, ignoring the first day of data. The intuition is that the last
day of activity captures a typical shape of passenger ridership.

The following dates were manually labeled as anomalies based on knowledge of
holidays and events in NYC [Lavin and Ahmad, 2015]: Independence Day (7/4/14-
7/6/14), Labor Day (9/1/14), Labor Day Parade (9/6/14), NYC Marathon (11/02/14),

3http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

CHAPTER 4. ANOMALY DETECTION IN A STREAM 75

Thanksgiving (11/27/14), Christmas (12/25/14), New Years Day (1/1/15), North
American Blizzard (1/26/15-1/27/15). For simplicity, we label a 30-minute window
an anomaly if it overlaps one of these days.

Stream We treat the data as a stream – after observing points 1, . . . , i, our goal is
to score the (i+ 1)st point. The score that we produce for (i+ 1) is based only on the
previous data points 1, . . . , i, but not their labels. We use IF as the baseline. While
a streaming version was subsequently published [Tan et al., 2011], since it was not
found to improve over IF [Emmott et al., 2013], we consider a more straightforward
adaptation. Since each tree in the forest is created based on a random sample of data,
we simply build each tree based on a random sample of the stream, e.g., uniform or
time-decayed as previously referenced. Our aim here is to compare to the baseline with
respect to accuracy, not running time. Each tree can be updated in an embarrassingly
parallel manner for a faster implementation.

Metrics To quantitatively evaluate our approach, we report on a number of preci-
sion/recall-related metrics. We learn a threshold for a good score on a training set
and report the effectiveness on a held out test set. The training set contains all points
before time t and the test set all points after time t. The threshold is chosen to opti-
mize the F1-measure (harmonic mean of precision and recall). We focus our attention
on positive precision and positive recall to avoid “boy who cried wolf” effects [Tsien
and Fackler, 1997, Lawless, 1994].

For the finer granularity data in the taxi cab data set, we view the ground truth
as segments of time when the data is in an anomalous state. Our goal is to quickly
and reliably identify these segments. We say that a segment is identified in the test
set if the algorithm produces a score over the learned threshold anytime during the
segment (including the sliding window, if applicable).

Results In the experiments, there were 200 trees in the forest, each computed based
on a random sample of 1K points. Note that varying the sample size does not alter
the nature of our conclusions. Since ridership today is likely similar to ridership
tomorrow, we set our time-decayed sampling parameter to the last two months of
ridership. All results are averaged over multiple runs (10). Standard deviation is also
reported. Figure 4.5 shows the result of the anomaly scores returned by CoDisp().

CHAPTER 4. ANOMALY DETECTION IN A STREAM 76

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

20
14
-0
9-
16
	2
1:
30
:0
0	

20
14
-0
9-
19
	1
2:
00
:0
0	

20
14
-0
9-
22
	0
2:
30
:0
0	

20
14
-0
9-
24
	1
7:
00
:0
0	

20
14
-0
9-
27
	0
7:
30
:0
0	

20
14
-0
9-
29
	2
2:
00
:0
0	

20
14
-1
0-
02
	1
2:
30
:0
0	

20
14
-1
0-
05
	0
3:
00
:0
0	

20
14
-1
0-
07
	1
7:
30
:0
0	

20
14
-1
0-
10
	0
8:
00
:0
0	

20
14
-1
0-
12
	2
2:
30
:0
0	

20
14
-1
0-
15
	1
3:
00
:0
0	

20
14
-1
0-
18
	0
3:
30
:0
0	

20
14
-1
0-
20
	1
8:
00
:0
0	

20
14
-1
0-
23
	0
8:
30
:0
0	

20
14
-1
0-
25
	2
3:
00
:0
0	

20
14
-1
0-
28
	1
3:
30
:0
0	

20
14
-1
0-
31
	0
4:
00
:0
0	

20
14
-1
1-
02
	1
8:
30
:0
0	

20
14
-1
1-
05
	0
9:
00
:0
0	

20
14
-1
1-
07
	2
3:
30
:0
0	

20
14
-1
1-
10
	1
4:
00
:0
0	

20
14
-1
1-
13
	0
4:
30
:0
0	

20
14
-1
1-
15
	1
9:
00
:0
0	

20
14
-1
1-
18
	0
9:
30
:0
0	

20
14
-1
1-
21
	0
0:
00
:0
0	

20
14
-1
1-
23
	1
4:
30
:0
0	

20
14
-1
1-
26
	0
5:
00
:0
0	

20
14
-1
1-
28
	1
9:
30
:0
0	

20
14
-1
2-
01
	1
0:
00
:0
0	

20
14
-1
2-
04
	0
0:
30
:0
0	

20
14
-1
2-
06
	1
5:
00
:0
0	

20
14
-1
2-
09
	0
5:
30
:0
0	

20
14
-1
2-
11
	2
0:
00
:0
0	

20
14
-1
2-
14
	1
0:
30
:0
0	

20
14
-1
2-
17
	0
1:
00
:0
0	

20
14
-1
2-
19
	1
5:
30
:0
0	

20
14
-1
2-
22
	0
6:
00
:0
0	

20
14
-1
2-
24
	2
0:
30
:0
0	

20
14
-1
2-
27
	1
1:
00
:0
0	

20
14
-1
2-
30
	0
1:
30
:0
0	

20
15
-0
1-
01
	1
6:
00
:0
0	

20
15
-0
1-
04
	0
6:
30
:0
0	

20
15
-0
1-
06
	2
1:
00
:0
0	

20
15
-0
1-
09
	1
1:
30
:0
0	

20
15
-0
1-
12
	0
2:
00
:0
0	

20
15
-0
1-
14
	1
6:
30
:0
0	

20
15
-0
1-
17
	0
7:
00
:0
0	

20
15
-0
1-
19
	2
1:
30
:0
0	

20
15
-0
1-
22
	1
2:
00
:0
0	

20
15
-0
1-
25
	0
2:
30
:0
0	

20
15
-0
1-
27
	1
7:
00
:0
0	

20
15
-0
1-
30
	0
7:
30
:0
0	

numPassengers	 Anomaly	Score	

NYC	Marathon	

Christmas	

New	Years	

Snowstorm	

1	

Figure 4.5: NYC taxi data and CoDisp(). Note that Thanksgiving is not captured.

In a more detailed evaluation, the first set of results (Table 4.1) show that the
proposed RRCF method is more accurate than the baseline. Particularly noteworthy
is RRCF’s higher positive precision, which implies a lower false alarm rate. In Ta-
ble 4.2, we show the segment-based results. Whereas Table 4.1 may give more credit
for catching a long anomaly over a short one, the segment metric weighs each alarm
equally. The proposed RRF method not only catches more alarms, but also catches
them more quickly. The units are measured in 30 minute increments – so 11 hours on
average to catch an alarm on the baseline and 7 hours for the RRCF method. These
actual numbers are not as important here, since anomaly start/end times are labeled
somewhat loosely. The difference in time to catch does matter. Precision@K is also
reported in Table 4.2.

Discussion: Shingle size, if used, matters in the sense that shingles that are too
small may catch naturally varying noise in the signal and trigger false alarms. On
the other hand, shingles that are too large may increase the time it takes to find an
alarm, or miss the alarm altogether. Time decay requires knowledge of the domain.
Sample size choice had less effect – with varying sample sizes of 256, 512 and 1K the
conclusions are unchanged on this dataset.

4.6 Conclusions and Future Work

We introduced the robust random cut forest sketch and proved that it approximately
preserves pairwise distances. If the data is recorded in the correct scale, distance is
crucially important to preserve for computations, and not just anomaly detection.
We adopted a model-based definition of an anomaly that captures the differential
effect of adding/removing a point on the size of the sketch. Experiments suggest that
the algorithm holds great promise for fighting alarm fatigue as well as catching more
missed alarms.

We believe that the random cut forest sketch is more beneficial than what we

CHAPTER 4. ANOMALY DETECTION IN A STREAM 77

have established. For example, it may also be helpful for clustering since pairwise
distances are approximately preserved. In addition, it may help detect changepoints
in a stream. A changepoint is a moment in time t where before time t the data is
drawn from a distribution D1 and after time t the data is drawn from a distribution
D2, and D1 is sufficiently different from D2 [Kifer et al., 2004, Dasu et al., 2006].
By maintaining a sequence of sketches over time, one may be able to compare two
sketches to determine if the distribution has changed.

Chapter Appendix

4.A Proof of Theorem 4.2

Observe that in the construction of RRCF (S) where the sum of the lengths of the
sides of B(S) is denoted by P (S), the probability that we separated two points
x(1),x(2) by the first cut is proportional to the L1 distance measure:

1

P (S)

∑

i

|x(1)i − x(2)i|

Also observe that P (S) decreases by at least a factor of (1− 1
2d

). To observe this,
note that if we start with a rectangle where side i has length `i (and

∑
i `i = P (S)

then the new expected perimeter of either side decreases by (the first term corresponds
to choosing the dimension and the second term is the expected decrease in that
dimension),

∑

i

`i
P (S)

`i
2
≥
∑

i `
2
i

2
∑

i `i
≥
∑

i `i
2d

Lemma 4.19. Given a tree T in RRCF (S) suppose we measure the distance between
two points as follows: we find the first level where the points are separated and let
the set be S. We assign the distance P (S), i.e., the sum of the edge lengths of the
minimum bounding box B(S). Then the expected length of pair of points x(1),x(2)
is L1(x(1),x(2)) times the expected number of steps to separate x(1),x(2). Observe
that we never assign a distance less than L1(x(1),x(2)).

Proof. Follows from the fact that the distance assigned at a level corresponding to
S ′ is P (S ′) and the probability of that distance assignment is L1(x(1),x(2))/P (S ′).
The expected distance therefore is L1(x(1),x(2)) times the expected number of steps
that separate the two points!

Remark: Note that the expected number of steps can be bounded byO(d logP (S)/L1)
since P (S) decreases by a (1 − 1

2d
) factor in expectation. Other bounds can also be

used – for example logarithm of the ratio of the total volume to the volume of the

78

CHAPTER 4. ANOMALY DETECTION IN A STREAM 79

smallest box that contains x(1),x(2) since in each step we divide the volume by 1
2

in
expectation.

Part II

Incentives

80

Chapter 5

Online Prediction with Selfish
Experts

Up until now, we have looked at the role that data can play in game theory.1 This
chapter still concerns learning from data, but it looks at how incentives may play a
role in a learning setting that has thus far been incognizant of incentive issues. We
consider the problem of binary prediction with expert advice in settings where experts
have agency and seek to maximize their credibility. This chapter makes three main
contributions. First, it defines a model to reason formally about settings with selfish
experts, and demonstrates that “incentive compatible” (IC) algorithms are closely
related to the design of proper scoring rules. Designing a good IC algorithm is easy if
the designer’s loss function is quadratic, but for other loss functions, novel techniques
are required. Second, we design IC algorithms with good performance guarantees for
the absolute loss function. Third, we give a formal separation between the power of
online prediction with selfish experts and online prediction with honest experts by
proving lower bounds for both IC and non-IC algorithms. In particular, with selfish
experts and the absolute loss function, there is no (randomized) algorithm for online
prediction—IC or otherwise—with asymptotically vanishing regret.

5.1 Introduction

In the months leading up to elections and referendums, a plethora of pollsters try
to figure out how the electorate is going to vote. Different pollsters use different
methodologies, reach different people, and may have sources of random errors, so
generally the polls don’t fully agree with each other. Aggregators such as Nate Silver’s
FiveThirtyEight, The Upshot by the New York Times, and HuffPost Pollster by

1This chapter is based on joint work with Tim Roughgarden [Roughgarden and Schrijvers, 2017].

81

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 82

the Huffington Post consolidate these different reports into a single prediction, and
hopefully reduce random errors.2 FiveThirtyEight in particular has a solid track
record for their predictions, and as they are transparent about their methodology we
use them as a motivating example in this paper. To a first-order approximation, they
operate as follows: first they take the predictions of all the different pollsters, then
they assign a weight to each of the pollsters based on past performance (and other
factors), and finally they use the weighted average of the pollsters to run simulations
and make their own prediction.3

But could the presence of an institution that rates pollsters inadvertently create
perverse incentives for the pollsters? The FiveThirtyEight pollster ratings are publicly
available.4 The ratings can be interpreted as a reputation, and a low rating can
negatively impact future revenue opportunities for a pollster. Moreover, it has been
demonstrated in practice that experts do not always report their true beliefs about
future events. For example, in weather forecasting there is a known “wet bias,”
where consumer-facing weather forecasters deliberately overestimate low chances of
rain (e.g. a 5% chance of rain is reported as a 25% chance of rain) because people
don’t like to be surprised by rain [Bickel and Kim, 2008].

These examples motivate the development of models of aggregating predictions
that endow agency to the data sources.5 While there are multiple models in which
we can investigate this issue, a natural candidate is the problem of prediction with
expert advice. By focusing on a standard model, we abstract away from the fine
details of FiveThirtyEight (which are anyways changing all the time), which allows
us to formulate a general model of prediction with experts that clearly illustrates why
incentives matter. In the classical model [Littlestone and Warmuth, 1994, Freund
and Schapire, 1997], at each time step, several experts make predictions about an
unknown event. An online prediction algorithm aggregates experts’ opinions and
makes its own prediction at each time step. After this prediction, the event at this
time step is realized and the algorithm incurs a loss as a function of its prediction
and the realization. To compare its performance against individual experts, for each

2FiveThirtyEight: https://fivethirtyeight.com/, The Upshot: https://www.nytimes.com/
section/upshot, HuffPost Pollster: http://elections.huffingtonpost.com/pollster.

3This is of course a simplification. FiveThirtyEight also uses features like the change in a poll over
time, the state of the economy, and correlations between states. See https://fivethirtyeight.

com/features/how-fivethirtyeight-calculates-pollster-ratings/ for details. Our goal in
this paper is not to accurately model all of the fine details of FiveThirtyEight (which are anyways
changing all the time). Rather, it is to formulate a general model of prediction with experts that
clearly illustrates why incentives matter.

4https://projects.fivethirtyeight.com/pollster-ratings/
5More generally, one can investigate how the presence of machine learning algorithms affects

data generating processes, either during learning, e.g. [Dekel et al., 2010, Cai et al., 2015], or during
deployment, e.g. [Hardt et al., 2016, Brückner and Scheffer, 2011]. We discuss some of this work in
the related work section.

https://fivethirtyeight.com/
https://www.nytimes.com/section/upshot
https://www.nytimes.com/section/upshot
http://elections.huffingtonpost.com/pollster
https://fivethirtyeight.com/features/how-fivethirtyeight-calculates-pollster-ratings/
https://fivethirtyeight.com/features/how-fivethirtyeight-calculates-pollster-ratings/
https://projects.fivethirtyeight.com/pollster-ratings/

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 83

expert the algorithm calculates what its loss would have been had it always followed
the expert’s prediction. While the problems introduced in this paper are relevant for
general online prediction, to focus on the most interesting issues we concentrate on the
case of binary events, and real-valued predictions in [0, 1]. For different applications,
different notions of loss are appropriate, so we parameterize the model by a loss
function `. Thus our formal model is: at each time step t = 1, 2, . . . , T :

1. Each expert i makes a prediction p
(t)
i ∈ [0, 1], with higher values indicating

stronger advocacy for the event “1.”

2. The online algorithm commits to a probability distribution over {0, 1}, with q(t)

denoting the probability assigned to “1.”

3. The outcome r(t) ∈ {0, 1} is realized.

4. The algorithm incurs a loss of `(q(t), r(t)) and calculates for each expert i a loss

of `(p
(t)
i , r

(t)).

The standard goal in this problem is to design an online prediction algorithm
that is guaranteed to have expected loss not much larger than that incurred by the
best expert in hindsight. The classical solutions maintain a weight for each expert
and make a prediction according to which outcome has more expert weight behind
it. An expert’s weight can be interpreted as a measure of its credibility in light
of its past performance. The (deterministic) Weighted Majority (WM) algorithm
always chooses the outcome with more expert weight. The Randomized Weighted
Majority (RWM) algorithm randomizes between the two outcomes with probability
proportional to their total expert weights. The most common method of updating
experts’ weights is via multiplication by 1− η`(p(t)i , r(t)) after each time step t, where
η is the learning rate. We call this the “standard” or “classical” version of the WM
and RWM algorithm.

The classical model instills no agency in the experts. To account for this, in this
paper we replace Step 1 of the classical model by:

1a. Each expert i formulates a belief b
(t)
i ∈ [0, 1].

1b. Each expert i reports a prediction p
(t)
i ∈ [0, 1] to the algorithm.

Each expert now has two types of loss at each time step — the reported loss `(p
(t)
i , r

(t))

with respect to the reported prediction and the true loss `(b
(t)
i , r

(t)) with respect to
her true beliefs.6

6When we speak of the best expert in hindsight, we are always referring to the true losses.
Guarantees with respect to reported losses follow from standard results [Littlestone and Warmuth,
1994, Freund and Schapire, 1997, Cesa-Bianchi et al., 2007], but are not immediately meaningful.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 84

When experts care about the weight that they are assigned, and with it their
reputation and influence in the algorithm, different loss functions can lead to different
expert behaviors. For example, in Section 5.2 we observe that for the quadratic
loss function, in the standard WM and RWM algorithms, experts have no reason to
misreport their beliefs. The next example shows that this is not the case for other
loss functions, such as the absolute loss function.7

Example 5.1. Consider the standard WM algorithm, where each expert initially has
unit weight, and an expert’s weight is multiplied by 1− η|p(t)i − r(t)| at a time step t,
where η ∈ (0, 1

2
) is the learning rate. Suppose there are two experts and T = 1, and

that b
(1)
1 = .49 while b

(1)
2 = 1. Each expert reports to maximize her expected weight.

Expanding, for each i = 1, 2 we have

E[w
(1)
i] = Pr(r(1) = 1) · (1− η(1− p(1)i)) + Pr(r(1) = 0) · (1− ηp(1)i)

= b
(1)
i · (1− η(1− p(1)i)) + (1− b(1)i) · (1− ηp(1)i)

= b
(1)
i − b(1)i η + b

(1)
i ηp

(1)
i + 1− ηp(1)i − b(1)i + b

(1)
i ηp

(1)
i

= 2b
(1)
i ηp

(1)
i − p(1)i η − b(1)i η + 1,

where all expectations and probabilities are with respect to the true beliefs of agent i.
To maximize this expected weight over the possible reports p

(1)
i ∈ [0, 1], we can omit

the second two terms (which are independent of p
(1)
i) and divide out by η to obtain

arg max
p
(1)
i ∈[0,1]

2b
(1)
i ηp

(1)
i − p(1)i η − b(1)i η + 1 = arg max

p
(1)
i ∈[0,1]

p
(1)
i (2b

(1)
i − 1)

=

{
1 if b

(1)
i ≥ 1

2

0 otherwise.

Thus an expert always reports a point mass on whichever outcome she believes more
likely. In our example, the second expert will report her true beliefs (p

(t)
2 = 1) while

the first will not (p
(t)
1 = 0). While the combined true beliefs of the experts clearly

favor outcome 1, the WM algorithm sees two opposing predictions and must break ties
arbitrarily between them.

7The loss function is often tied to the particular application. For example, in the current
FiveThirtyEight pollster rankings, the performance of a pollster is primarily measured according
to an absolute loss function and also whether the candidate with the highest polling numbers ended
up winning (see https://github.com/fivethirtyeight/data/tree/master/pollster-ratings).
However, in 2008 FiveThirtyEight used the notion of “pollster introduced error” or PIE, which is
the square root of a difference of squares, as the most important feature in calculating the weights,
see https://fivethirtyeight.com/features/pollster-ratings-v31/.

https://github.com/fivethirtyeight/data/tree/master/pollster-ratings
https://fivethirtyeight.com/features/pollster-ratings-v31/

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 85

This conclusion can also be drawn directly from the property elicitation literature.
Here, the absolute loss function is known to elicit the median [Bonin, 1976][Thomson,
1979], and since we have binary realizations, the median is either 0 or 1. Example 5.1
shows that for the absolute loss function the standard WM algorithm is not “incentive-
compatible” in a sense that we formalize in Section 5.2. There are similar examples
for the other commonly studied weight update rules and for the RWM algorithm. We
might care about truthful reporting for its own sake, but additionally the worry is
that non-truthful reports will impede our ability to get good regret guarantees (with
respect to experts’ true losses).

We study several fundamental questions about online prediction with selfish ex-
perts:

1. What is the design space of “incentive-compatible” online prediction algorithms,
where every expert is incentivized to report her true beliefs?

2. Given a loss function like absolute loss, are there incentive-compatible algorithm
that obtain good regret guarantees?

3. Is online prediction with selfish experts strictly harder than in the classical
model with honest experts?

5.1.1 Our Results

The first contribution of this paper is the development of a model for reasoning
formally about the design and analysis of weight-based online prediction algorithms
when experts are selfish (Section 5.2), and the definition of an “incentive-compatible”
(IC) such algorithm. Intuitively, an IC algorithm is such that each expert wants to
report its true belief at each time step. We demonstrate that the design of IC online
prediction algorithms is closely related to the design of strictly proper scoring rules.
Using this, we show that for the quadratic loss function, the standard WM and
RWM algorithms are IC, whereas these algorithms are not generally IC for other loss
functions.

Our second contribution is the design of IC prediction algorithms for the absolute
loss function with non-trivial performance guarantees. For example, our best result
for deterministic algorithms is: the WM algorithm, with experts’ weights evolving
according to the spherical proper scoring rule (see Section 5.3), is IC and has loss
at most 2 +

√
2 times the loss of best expert in hindsight (in the limit as T → ∞).

A variant of the RWM algorithm with the Brier scoring rule is IC and has expected
loss at most 2.62 times that of the best expert in hindsight (also in the limit, see
Section 5.6).

Our third and most technical contribution is a formal separation between online
prediction with selfish experts and the traditional setting with honest experts. Recall

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 86

that with honest experts, the classical (deterministic) WM algorithm has loss at most
twice that of the best expert in hindsight (as T →∞) Littlestone and Warmuth [1994].
We prove that the worst-case loss of every (deterministic) IC algorithm (Section 5.4)
and every non-IC algorithm satisfying mild technical conditions (Section 5.5) has
worst-case loss bounded away from twice that of the best expert in hindsight (even
as T → ∞). A consequence of our lower bound is that, with selfish experts, there
is no natural (randomized) algorithm for online prediction—IC or otherwise—with
asymptotically vanishing regret.

5.1.2 Related Work

We believe that our model of online prediction over time with selfish experts is novel.
We next survey the multiple other ways in which online learning and incentive issues
have been blended, and the other efforts to model incentive issues in machine learning.

There is a large literature on prediction and decision markets (e.g. [Chen and
Pennock, 2010, Horn et al., 2014]), which also aim to aggregate information over time
from multiple parties and make use of proper scoring rules to do it. There are several
major differences between our model and prediction markets. First, in our model,
the goal is to predict a sequence of events, and there is feedback (i.e., the realization)
after each one. In a prediction market, the goal is to aggregate information about a
single event, with feedback provided only at the end (subject to secondary objectives,
like bounded loss).8 Second, our goal is to make accurate predictions, while that
of a prediction market is to aggregate information. For example, if one expert is
consistently incorrect over time, we would like to ignore her reports rather than
aggregate them with others’ reports. Finally, while there are strong mathematical
connections between cost function-based prediction markets and regularization-based
online learning algorithms in the standard (non-IC) model [Abernethy et al., 2013],
there does not appear to be analogous connections with online prediction with selfish
experts.

There is also an emerging literature on “incentivizing exploration” (as opposed
to exploitation) in partial feedback models such as the bandit model (e.g. [Frazier
et al., 2014, Mansour et al., 2016]). Here, the incentive issues concern the learning
algorithm itself, rather than the experts (or “arms”) that it makes use of.

The question of how an expert should report beliefs has been studied before in
the literature on strictly proper scoring rules [Brier, 1950, McCarthy, 1956, Savage,
1971, Gneiting and Raftery, 2007], but this literature typically considers the evalua-
tion of a single prediction, rather than low-regret learning. The work by Bayarri and
DeGroot [1989] specifically looks at the question of how an expert should respond

8In the even more distantly related peer prediction scenario [Miller et al., 2005], there is never
any realization at all.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 87

to an aggregator who assigns and updates weights based on their predictions. Their
work focuses on optimizing relative weight under different objectives and informa-
tional assumptions. However, it predates the work on low-regret learning, and it does
not include performance guarantees for the aggregator over time. Boutilier [2012]
discusses a model in which an aggregator wants to take a specific action based on
predictions that she elicits from experts. He explores incentive issues where experts
have a stake in the action that is taken by the decision maker.

Finally, there are many works that fall under the broader umbrella of incentives in
machine learning. Roughly, work in this area can be divided into two genres: incen-
tives during the learning stage, or incentives during the deployment stage. During the
learning stage, one of the main considerations is incentivizing data providers to exert
effort to generate high-quality data. There are several recent works that propose ways
to elicit data in crowdsourcing applications in repeated settings through payments,
e.g. [Cai et al., 2015, Shah and Zhou, 2015, Liu and Chen, 2016]. Outside of crowd-
sourcing, Dekel et al. [2010] consider a regression task where different experts have
their own private data set, and they seek to influence the learner to learn a function
such that the loss of their private data set with respect to the function is low.

During deployment, the concern is that the input is given by agents who have a
stake in the result of the classification, e.g. an email spammer wishes to avoid its
emails being classified as spam. Brückner and Scheffer [2011] model a learning task
as a Stackelberg game. On the other hand Hardt et al. [2016] consider a cost to
changing data, e.g. improving your credit score by opening more lines of credit, and
give results with respect to different cost functions.

Online learning does not fall neatly into either learning or deployment, as the
learning is happening while the system is deployed. Babaioff et al. [2010] consider the
problem of no-regret learning with selfish experts in an ad auction setting, where the
incentives come from the allocations and payments of the auction, rather than from
weights as in our case.

5.1.3 Organization

Section 5.2 formally defines weight-update online prediction algorithms and shows
a connection between algorithms that are incentive compatible and proper scoring
rules. We use the formalization to show that when we care about achieving guarantees
for quadratic losses, the standard WM and RWM algorithms work well. Since the
standard algorithm fails to work well for absolute losses, we focus in the remainder
of the paper on proving guarantees for this case.

Section 5.3 gives a deterministic weight-update online prediction algorithm that
is incentive-compatible and has absolute loss at most 2 +

√
2 times that of the best

expert in hindsight (in the limit). Additionally we show that the weighted majority

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 88

algorithm with the standard update rule has a worst-case true loss of at least 4 times
the best expert in hindsight.

To show the limitations of online prediction with selfish experts, we break our
lower bound results into two parts. In Section 5.4 we show that any deterministic
incentive compatible weight-update online prediction algorithm has worst case loss
bounded away from 2, even as T →∞. Then in Section 5.5 we show that under mild
technical conditions, the same is true for non-IC algorithms.

Section 5.6 contains our results for randomized algorithms. It shows that the lower
bounds for deterministic algorithms imply that under the same conditions randomized
algorithms cannot have asymptotically vanishing regret. We do give an IC randomized
algorithm that achieves worst-case loss at most 2.62 times that of the best expert in
hindsight (in the limit).

Finally, in Section 5.7 we show simulations that indicate that different IC methods
show similar regret behavior, and that their regret is substantially better than that of
the non-IC standard algorithms, suggesting that the worst-case characterization we
prove holds more generally.

The appendix contains omitted proofs (Appendix 5.A), and a discussion on the
selecting appropriate proper scoring rules for good guarantees (Appendix 5.B).

5.2 Preliminaries and Model

5.2.1 Standard Model

At each time step t ∈ 1, ..., T we want to predict a binary realization r(t) ∈ {0, 1}. To
help in the prediction, we have access to n experts that for each time step report a
prediction p

(t)
i ∈ [0, 1] about the realization. The realizations are determined by an

oblivious adversary, and the predictions of the experts may or may not be accurate.
The goal is to use the predictions of the experts in such a way that the algorithm
performs nearly as well as the best expert in hindsight. Most of the algorithms
proposed for this problem fall into the following framework.

Definition 5.2 (Weight-update Online Prediction Algorithm). A weight-update on-

line prediction algorithm maintains a weight w
(t)
i for each expert and makes its pre-

diction q(t) based on
∑n

i=1w
(t)
i p

(t)
i and

∑n
i w

(t)
i (1 − p(t)i). After the algorithm makes

its prediction, the realization r(t) is revealed, and the algorithm updates the weights of
experts using the rule

w
(t+1)
i = f

(
p
(t)
i , r

(t)
)
· w(t)

i , (5.1)

where f : [0, 1]× {0, 1} → R+ is a positive function on its domain.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 89

The standard WM algorithm has f(p
(t)
i , r

(t)) = 1− η`(p(t)i , r(t)) where η ∈ (0, 1
2
) is

the learning rate, and predicts q(t) = 1 if and only if
∑n

i w
(t)
i p

(t)
i ≥

∑n
i w

(t)
i (1− p(t)i).

Let the total loss of the algorithm be M (T) =
∑T

t=1 `(q
(t), r(t)) and let the total loss

of expert i be m
(T)
i =

∑T
t=1 `(p

(t)
i , r

(t)). The MW algorithm has the property that

M (T) ≤ 2(1 + η)m
(T)
i + 2 lnn

η
for each expert i, and RWM —where the algorithm picks

1 with probability proportional to
∑n

i w
(t)
i p

(t)
i — satisfies M (T) ≤ (1 + η)m

(T)
i + lnn

η

for each expert i [Littlestone and Warmuth, 1994][Freund and Schapire, 1997].
The notion of “no α-regret” [Kakade et al., 2009] captures the idea that the per

time-step loss of an algorithm is α times that of the best expert in hindsight, plus a
term that goes to 0 as T grows:

Definition 5.3 (α-regret). An algorithm is said to have no α-regret if M (T) ≤
αminim

(T)
i + o(T).

By taking η = O(1/
√
T), MW is a no 2-regret algorithm, and RWM is a no

1-regret algorithm.

5.2.2 Selfish Model

We consider a model in which experts have agency about the prediction they report,
and care about the weight that they are assigned. In the selfish model, at time t the
expert formulates a private belief b

(t)
i about the realization, but she is free to report

any prediction p
(t)
i to the algorithm. Let Bern(p) be a Bernoulli random variable with

parameter p. For any non-negative weight update function f ,

max
p

E
b
(t)
i

[w
(t+1)
i] = max

p
E
r∼Bern

(
b
(t)
i

)[f (p, r)w
(t)
i] = w

(t)
i ·
(

max
p

E
r∼Bern

(
b
(t)
i

)[f (p, r)]

)
.

So expert i will report whichever p
(t)
i will maximize the expectation of the weight

update function.
Performance of an algorithm with respect to the reported loss of experts follows

from the standard analysis [Littlestone and Warmuth, 1994]. However, the true loss
may be worse (in Section 5.3 we show this for the standard update rule, Section 5.5
shows it more generally). Unless explicitly stated otherwise, in the remainder of

this paper m
(T)
i =

∑T
t=1 `(b

(t)
i , r

(t)) refers to the true loss of expert i. For now this

motivates restricting the weight update rule f to functions where reporting p
(t)
i = b

(t)
i

maximizes the expected weight of experts. We call these weight-update rules Incentive
Compatible (IC).

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 90

Definition 5.4 (Incentive Compatibility). A weight-update function f is incentive

compatible (IC) if reporting the true belief b
(t)
i is always a best response for every

expert at every time step. It is strictly IC when p
(t)
i = b

(t)
i is the only best response.

By a “best response,” we mean an expected utility-maximizing report, where the
expectation is with respect to the expert’s beliefs.

Collusion. The definition of IC does not rule out the possibility that experts can
collude to jointly misreport to improve their weights. We therefore also consider a
stronger notion of incentive compatibility for groups with transferable utility.

Definition 5.5 (Incentive Compatibility for Groups with Transferable Utility). A
weight-update function f is incentive compatible for groups with transferable utility
(TU-GIC) if for every subset S of players, the total expected weight of the group∑

i∈S Eb(t)i
[w

(t+1)
i] is maximized by each reporting their private belief b

(t)
i .

Note that TU-GIC is a strictly stronger concept than IC, as for any algorithm that
is TU-GIC, the condition needs to hold for groups of size 1, which is the definition
of IC. The concept is also strictly stronger than that of GIC with nontransferable
utility (NTU-GIC), where for every group S it only needs to hold that there are no
alternative reports that would make no member worse off, and at least one member
better off [Moulin, 1999][Jain and Mahdian, 2007].

5.2.3 Proper Scoring Rules

Incentivizing truthful reporting of beliefs has been studied extensively, and the set
of functions that do this is called the set of proper scoring rules. Since we focus on
predicting a binary event, we restrict our attention to this class of functions.

Definition 5.6 (Binary Proper Scoring Rule, [Schervish, 1989]). A function f :
[0, 1] × {0, 1} → R ∪ {±∞} is a binary proper scoring rule if it is finite except
possibly on its boundary and whenever for p ∈ [0, 1]

p ∈ max
q∈[0,1]

p · f(q, 1) + (1− p) · f(q, 0).

A function f is a strictly proper scoring rule if p is the only value that maximizes
the expectation. The first perhaps most well-known proper scoring rule is the Brier
scoring rule.

Example 5.7 (Brier Scoring Rule, [Brier, 1950]). The Brier score is Br(p, r) =
2pr − (p2 + (1 − p)2) where pr = pr + (1 − p)(1 − r) is the report for the event that
materialized.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 91

We will use the Brier scoring rule in Section 5.6 to construct an incentive-compatible
randomized algorithm with good guarantees. The following proposition follows di-
rectly from Definitions 5.4 and 5.6:

Proposition 5.8. A weight-update rule f is (strictly) incentive compatible if and only
if f is a (strictly) proper scoring rule.

Surprisingly, this result remains true even when experts can collude.While the
realizations are obviously correlated, linearity of expectation causes the sum to be
maximized exactly when each expert maximizes their expected weight.

Proposition 5.9. A weight-update rule f is (strictly) incentive compatible for groups
with transferable utility if and only if f is a (strictly) proper scoring rule.

Thus, for online prediction with selfish experts, we get TU-GIC “for free.”It is
quite uncommon for problems in non-cooperate game theory to admit good TU-GIC
solutions. For example, results for auctions (either for revenue or welfare) break
down once bidders collude, see [Goldberg and Hartline, 2005] and references therein
for more examples from theory and practice. In the remainder of the paper we will
simply us IC to refer to both incentive compatibility and incentive compatibility for
groups with transferable utility, as strictly proper scoring rules lead to algorithms
that satisfy both definitions.

So when considering incentive compatibility in the online prediction with selfish
experts setting, we are restricted to considering proper scoring rules as weight-update
rules. Moreover, since f needs to be positive, only bounded proper scoring rules can
be used. Conversely, any bounded scoring rule can be used, possibly after an affine
transformation (which preserves proper-ness). Are there any proper scoring rules that
give an online prediction algorithm with a good performance guarantee?

5.2.4 Online Learning with Quadratic Losses

The first goal of this paper is to describe the class of algorithms that lead incentive
compatible learning. Proposition 5.8 answers this question, so we can move over to our
second goal, which is for different loss functions, do there exist incentive compatible
algorithms with good performance guarantees? In this subsection we show that a
corollary of Proposition 5.8 is that the standard MW algorithm with the quadratic
loss function `(p, r) = (p− r)2 is incentive compatible.

Corollary 5.10. The standard WM algorithm with quadratic losses, i.e. w
(t+1)
i =

(1− η(p
(t)
i − r(t)))2 · w(t)

i is incentive compatible.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 92

Proof. By Proposition 5.8 it is sufficient to show that b
(t)
i = maxp b

(t)
i · (1 − η(p −

1)2) + (1− b(t)i) · (p− 0)2.

max
p
b
(t)
i · (1− η(p− 1)2) + (1− b(t)i) · (1− η(p− 0)2)

= max
p
b
(t)
i − b(t)i ηp2 + 2b

(t)
i ηp− b(t)i η + 1− b(t)i − ηp2 + b

(t)
i ηp

2

= max
p

1− b(t)i η + 2b
(t)
i ηp− ηp2

= max
p

1− b(t)i η + ηp(2b
(t)
i − p)

To solve this for p, we take the derivative with respect to p: d
dp

1−b(t)i η+ηp(2b
(t)
i −p) =

η(2b
(t)
i − 2p). So the maximum expected value is uniquely p = b

(t)
i .

A different way of proving the Corollary is by showing that the standard update
rule with quadratic losses can be translated into the Brier strictly proper scoring rule.
Either way, for applications with quadratic losses, the standard algorithm already
works out of the box. However, as we saw in Example 5.1, this is not the case
with the absolute loss function. As the absolute loss function arises in practice—
recall that FiveThirtyEight uses absolute loss to calculate their pollster ratings—in
the remainder of this paper we focus on answering questions (2) and (3) from the
introduction for the absolute loss function.

5.3 Deterministic Algorithms for Selfish Experts

This section studies the question if there are good online prediction algorithms for
the absolute loss function. We restrict our attention here to deterministic algorithms;
Section 5.6 gives a randomized algorithm with good guarantees.

Proposition 5.8 tells us that for selfish experts to have a strict incentive to report
truthfully, the weight-update rule must be a strictly proper scoring rule. This section
gives a deterministic algorithm based on the spherical strictly proper scoring rule
that has no (2+

√
2)-regret (Theorem 5.12). Additionally, we consider the question if

the non-truthful reports from experts in using the standard (non-IC) WM algorithm
are harmful. We show that this is the case by proving that the algorithm is not a
no (4 − O(1))-regret algorithm, for any constant smaller than 4 (Proposition 5.13).
This shows that, when experts are selfish, the IC online prediction algorithm with
the spherical rule outperforms the standard WM algorithm (in the worst case).

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 93

5.3.1 Deterministic Online Prediction using a Spherical Rule

We next give an algorithm that uses a strictly proper scoring rule that is based on
the spherical rule scoring rule.9 In the following, let s

(t)
i = |p(t)i − r(t)| be the absolute

loss of expert i.
Consider the following weight-update rule:

fsp

(
p
(t)
i , r

(t)
)

= 1− η

1− 1− s(t)i√(

p
(t)
i

)2
+
(

1− p(t)i
)2

 . (5.2)

The following proposition establishes that this is in fact a strictly proper scoring rule.

Proposition 5.11. The spherical weight-update rule in (5.2) is a strictly proper scor-
ing rule.

Proof. The standard spherical strictly proper scoring rule is

1− s(t)i√
(p

(t)
i)2 + (1− p(t)i)2

.

Any positive affine transformation of a strictly proper scoring rule yields another
strictly proper scoring rule, see e.g. [Gneiting and Raftery, 2007], hence

1− s(t)i√
(p

(t)
i)2 + (1− p(t)i)2

− 1

is also a strictly proper scoring rule. Now we multiply this by η and add 1 to obtain

1 + η

1− s(t)i√(
p
(t)
i

)2
+
(

1− p(t)i
)2 − 1

 ,

and rewriting proves the claim.

In addition to incentivizing truthful reporting, the WM algorithm with the update
rule fsp does not do much worse than the best expert in hindsight. (See the chapter
appendix for the proof.)

9See Appendix 5.B for intuition about why this rule yields better results than other natural
candidates, such as the Brier scoring rule.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 94

Theorem 5.12. The WM algorithm with weight-update rule (5.2) for η = O(1/
√
T) <

1
2

has no (2 +
√

2)-regret.

5.3.2 True Loss of the Non-IC Standard Rule

It is instructive to compare the guarantee in Theorem 5.12 with the performance of
the standard (non-IC) WM algorithm. With the standard weight update function

f(p
(t)
i , r

(t)) = 1 − ηs
(t)
i for η ∈ (0, 1

2
), the WM algorithm has the guarantee that

M (T) ≤ 2
(

(1 + η)m
(T)
i + lnn

η

)
with respect to the reported loss of experts. However,

Example 5.1 demonstrates that this algorithm incentivizes extremal reports, i.e. if
b
(t)
i ∈ [0, 1

2
) the expert will report p

(t)
i = 0 and if b

(t)
i ∈ (1

2
, 1] the expert will report 1.

The following proposition shows that, in the worst case, this algorithm does no better
than a factor 4 times the true loss of the best expert in hindsight. Theorem 5.12 shows
that a suitable IC algorithm can obtain a superior worst-case guarantee.

Proposition 5.13. The standard WM algorithm with weight-update rule f
(
p
(t)
i , r

(t)
)

=

1− η|p(t)i − r(t)| results in a total worst-case loss no better than

M (T) ≥ 4 ·min
i
m

(T)
i − o(1).

Proof. Let A be the standard weighted majority algorithm. We create an instance
with 2 experts where M (T) ≥ 4 · minim

(T)
i − o(1). Let the reports p

(t)
1 = 0, and

p
(t)
2 = 1 for all t ∈ 1, ..., T ; we will define b

(t)
i shortly. Given the reports, A will choose

a sequence of predictions, let r(t) be 1 whenever the algorithm chooses 0 and vice
versa, so that M (T) = T .

Now for all t such that r(t) = 1, set b
(t)
1 = 1

2
− ε and b

(t)
2 = 1, and for all t such

that r(t) = 0 set b
(t)
1 = 0 and b

(t)
2 = 1

2
+ ε, for small ε > 0. Note that the beliefs b

(t)
i

indeed lead to the reports p
(t)
i since A incentivizes rounding the reports to the nearest

integer.
Since the experts reported opposite outcomes, their combined total number of

incorrect reports is T , hence the best expert had a reported loss of at most T/2.

For each incorrect report p
(t)
i , the real loss of expert is |r(t) − b

(t)
i | = 1

2
+ ε, hence

minim
(T)
i ≤

(
1
2

+ ε
)
T/2, while M (T) = T . Taking ε = o(T−1) yields the claim.

5.4 The Cost of Selfish Experts for IC algorithms

We now address the third fundamental question: whether or not online prediction
with selfish experts is strictly harder than with honest experts. In this section we

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 95

restrict our attention to deterministic algorithms; we extend the results to randomized
algorithms in Section 5.6. As there exists a deterministic algorithm for honest experts
with no 2-regret, showing a separation between honest and selfish experts boils down
to proving that there exists a constant δ such that the worst-case loss is no better
than a factor of 2 + δ (with δ bounded away from 0 as T →∞).

In this section we show that such a δ exists for all incentive compatible algorithms,
and that δ depends on properties of a “normalized” version of the weight-update rule
f , independent of the learning rate. This implies that the lower bound also holds for
algorithms that, like the classical prediction algorithms, use a time-varying learning
rate. In Section 5.5 we show that under mild technical conditions the true loss of
non-IC algorithms is also bounded away from 2, and in Section 5.6 the lower bounds
for deterministic algorithms are used to show that there is no randomized algorithm
that achieves vanishing regret.

To prove the lower bound, we have to be specific about which set of algorithms
we consider. To cover algorithms that have a decreasing learning parameter, we first
show that any positive proper scoring rule can be interpreted as having a learning
parameter η.

Proposition 5.14. Let f be any strictly proper scoring rule. We can write f as
f(p, r) = a + bf ′(p, r) with a ∈ R, b ∈ R+ and f ′ a strictly proper scoring rule with
min(f ′(0, 1), f ′(1, 0)) = 0 and max(f ′(0, 0), f ′(1, 1)) = 1.

Proof. Let fmin = min(f(0, 1), f(1, 0)) and fmax = max(f(0, 0), f(1, 1)) = 1. Then

define f ′(p, r) = f(p,r)−fmin

fmax−fmin
, a = fmin and b = fmax − fmin. This is a positive affine

translation, hence f ′ is a strictly proper scoring rule.

We call f ′ : [0, 1] × {0, 1} → [0, 1] a normalized scoring rule. Using normalized
scoring rules, we can define a family of scoring rules with different learning rates η.

Definition 5.15. Let f be any normalized strictly proper scoring rule. Define F as
the following family of proper scoring rules generated by f :

F = {f ′(p, r) = a (1 + η(f(p, r)− 1)) : a > 0 and η ∈ (0, 1)}

By Proposition 5.14 the union of families generated by normalized strictly proper
scoring rules cover all strictly proper scoring rules. Using this we can now formulate
the class of deterministic algorithms that are incentive compatible.

Definition 5.16 (Deterministic Incentive-Compatible Algorithms). Let Ad be the

set of deterministic algorithms that update weights by w
(t+1)
i = a(1 + η(f(p

(t)
i , r

(t)) −
1))w

(t)
i , for a normalized strictly proper scoring rule f and η ∈ (0, 1

2
) with η possibly

decreasing over time. For q =
∑n

i=1w
(t)
i p

(t)
i /
∑n

i=1w
(t)
i , A picks q(t) = 0 if q < 1

2
,

q(t) = 1 if q > 1
2

and uses any deterministic tie breaking rule for q = 1
2
.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 96

Using this definition we can now state our main result:

Theorem 5.17. For the absolute loss function, there does not exists a deterministic
and incentive-compatible algorithm A ∈ Ad with no 2-regret.

To prove Theorem 5.17 we proceed in two steps. First we consider strictly proper
scoring rules that are symmetric with respect to the outcomes, because they lead to
a lower bound that can be naturally interpreted by looking at the geometry of the
scoring rule. We then extend these results to cover weight-update rules that use any
(potentially asymmetric) strictly proper scoring rule.

5.4.1 Symmetric Strictly Proper Scoring Rules

We first focus on symmetric scoring rules in the sense that f(p, 0) = f(1 − p, 1)
for all p ∈ [0, 1]. We can thus write these as f(p) = f(p, 1) = f(1 − p, 0). Many
common scoring rules are symmetric, including the Brier rule [Brier, 1950], the family
of pseudo-spherical rules (e.g. [Gneiting and Raftery, 2007]), the power family (e.g.
[Jose et al., 2008]), and the beta family [Buja et al., 2005] when α = β. We start by
defining the scoring rule gap for normalized scoring rules, which will determine the
lower bound constant.

Definition 5.18 (Scoring Rule Gap). The scoring rule gap γ of family F with gen-
erator f is γ = f(1

2
)− 1

2
(f(0) + f(1)) = f(1

2
)− 1

2
.

The following proposition shows that for all strictly proper scoring rules, the
scoring rule gap must be strictly positive.

Proposition 5.19. The scoring rule gap γ of a family generated by a symmetric
strictly proper scoring rule f is strictly positive.

Proof. Since f is symmetric and a strictly proper scoring rule, we must have that
1
2
f(1

2
) + 1

2
f(1

2
) > 1

2
f(0) + 1

2
f(1) (since an expert with belief 1

2
must have a strict

incentive to report 1
2

instead of 1). The statement follows from rewriting.

We are now ready to prove our lower bound for all symmetric strictly proper
scoring rules. The interesting case is where the learning rate η → 0, as otherwise it
is easy to prove a lower bound bounded away from 2.

The following lemma establishes that the gap parameter is important in prov-
ing lower bounds for IC online prediction algorithms. Intuitively, the lower bound
instance exploits that experts who report 1

2
will have a higher weight (due to the

scoring rule gap) than an expert who is alternatingly right and wrong with extreme
reports. This means that even though the indifferent expert has the same absolute
loss, she will have a higher weight and this can lead the algorithm astray. The scoring
rule gap is also relevant for the discussion in Appendix 5.B. We give partial proof of
the lemma below; the full proof appears in Appendix 5.A.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 97

Lemma 5.20. Let F be a family of scoring rules generated by a symmetric strictly
proper scoring rule f , and let γ be the scoring rule gap of F . In the worst case, MW
with any scoring rule f ′ ∈ F with η ∈ (0, 1

2
), algorithm loss M (T) and expert loss

m
(T)
i , satisfies

M (T) ≥
(

2 +
1

dγ−1e

)
·m(T)

i .

Proof Sketch. Let a, η be the parameters of f ′ in the family F , as in Definition 5.15.
Fix T sufficiently large and an integer multiple of 2dγ−1e + 1, and let e1, e2, and

e3 be three experts. For t = 1, ..., α · T where α = 2dγ−1e
2dγ−1e+1

such that αT is an even

integer, let p
(t)
1 = 1

2
, p

(t)
2 = 0, and p

(t)
3 = 1. Fix any tie-breaking rule for the algorithm.

Realization r(t) is always the opposite of what the algorithm chooses.
Let M (t) be the loss of the algorithm up to time t, and let m

(t)
i be the loss of

expert i. We first show that at t′ = αT , m
(t′)
1 = m

(t′)
2 = m

(t′)
3 = αT

2
and M (t′) = αT .

The latter part is obvious as r(t) is the opposite of what the algorithm chooses. That

m
(t′)
1 = αT

2
is also obvious as it adds a loss of 1

2
at each time step. To show that

m
(t′)
2 = m

(t′)
3 = αT

2
we do induction on the number of time steps, in steps of two. The

induction hypothesis is that after an even number of time steps, m
(t)
2 = m

(t)
3 and that

w
(t)
2 = w

(t)
3 . Initially, all weights are 1 and both experts have loss of 0, so the base case

holds. Consider the algorithm after an even number t time steps. Since w
(t)
2 = w

(t)
3 ,

p
(t)
3 = 1 − p

(t)
2 , and p

(t)
1 = 1

2
we have that

∑3
i=1w

(t)
i p

(t)
i =

∑3
i=1w

(t)
i (1 − p

(t)
i) and

hence the algorithm will use its tie-breaking rule for its next decision. Thus, either
e2 or e3 is wrong. Wlog let’s say that e2 was wrong (the other case is symmetric),

so m
(t+1)
2 = 1 + m

(t+1)
3 . Now at time t + 1, w

(t+1)
2 = (1 − η)w

(t+1)
3 < w

(t+1)
3 . Since e1

does not express a preference, and e3 has a higher weight than e2, the algorithm will
follow e3’s advice. Since the realization r(t+1) is the opposite of the algorithms choice,
this means that now e3 incurs a loss of one. Thus m

(t+2)
2 = m

(t+1)
2 and w

(t+2)
2 = w

(t+1)
2

and m
(t+2)
3 = 1 + m

(t+1)
3 = m

(t+2)
2 . The weight of expert e2 is w

(t+2)
2 = aa(1 − η)w

(t)
2

and the weight of expert e3 is w
(t+2)
3 = a(1 − η)aw

(t)
3 . By the induction hypothesis

w
(t)
2 = w

(t)
3 , hence w

(t+2)
2 = w

(t+2)
3 , and since we already showed that m

(t+2)
2 = m

(t+2)
3 ,

this completes the induction.
Now, for t = αT + 1, ..., T , we let p

(t)
1 = 1, p

(t)
2 = 0, p

(t)
3 = 1

2
and r(t) = 0. So

henceforth e3 does not provide information, e1 is always wrong, and e2 is always
right. If we can show that the algorithm will always follow e1, then the best expert
is e2 with a loss of m

(T)
2 = αT

2
, while the algorithm has a loss of M (T) = T . If

this holds for α < 1 this proves the claim. So what’s left to prove is that the
algorithm will always follow e1. Note that since p

(t)
3 = 1

2
it contributes equal amounts

to
∑3

i=1w
(t)
i p

(t)
i and

∑3
i=1w

(t)
i (1 − p(t)i) and is therefore ignored by the algorithm in

making its decision. So it suffices to look at e1 and e2. The algorithm will pick 1 iff

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 98

∑3
i=1w

(t)
i (1− p(t)i) ≤∑3

i=1w
(t)
i p

(t)
i , which after simplifying becomes w

(t)
1 > w

(t)
2 .

At time step t, w
(t)
1 =

(
a(1 + η(f(1

2
)− 1))

)αT
(a · (1 − η))t−αT for expert e1, and

w
(t)
2 = (a(1− η))

αT
2 a

αT
2

+t−αT for e2. We have that w
(t)
1 is decreasing faster in t than

w
(t)
2 . So if we can show that w

(T)
1 ≥ w

(T)
2 for some α < 1, then e2 will incur a total

loss of αT/2 while the algorithm incurs a loss of T and the statement is proved. This
is shown in the appendix.

As a consequence of Lemma 5.20, we can calculate lower bounds for specific strictly
proper scoring rules. For example, the spherical rule used in Section 5.3.1 is a sym-
metric strictly proper scoring rule with a gap parameter γ =

√
2
2
− 1

2
, and hence

1/dγ−1e = 1
5
.

Corollary 5.21. In the worst case, the deterministic algorithm based on the spherical
rule in Section 5.3.1 has

M (T) ≥
(
2 + 1

5

)
m

(T)
i .

We revisit the scoring rule gap parameter again in Appendix 5.B when we discuss
considerations for selecting different scoring rules.

5.4.2 Beyond Symmetric Strictly Proper Scoring Rules

We now extend the lower bound example to cover arbitrary strictly proper scoring
rules. As in the previous subsection, we consider properties of normalized scoring rules
to provide lower bounds that are independent of learning rate, but the properties in
this subsection have a less natural interpretation.

For arbitrary strictly proper scoring rule f ′, let f be the corresponding normalized
scoring rule, with parameters a and η. Since f is normalized, max{f(0, 0), f(1, 1)} = 1
and min{f(0, 1), f(1, 0)} = 0. We consider 2 cases, one in which f(0, 0) = f(1, 1) = 1
and f(0, 1) = f(1, 0) = 0 which is locally symmetric, and the case where at least one
of those equalities does not hold.

The semi-symmetric case. If it is the case that f has f(0, 0) = f(1, 1) = 1 and
f(0, 1) = f(1, 0) = 0, then f has enough symmetry to prove a variant of the lower
bound instance discussed just before. Define the semi-symmetric scoring rule gap as
follows.

Definition 5.22 (Semi-symmetric Scoring Rule Gap). The ‘semi-symmetric’ scoring
rule gap µ of family F with normalized generator f is µ = 1

2

(
f(1

2
, 0) + f(1

2
, 1)
)
− 1

2
.

Like the symmetric scoring rule gap, µ > 0 by definition, as there needs to be
a strict incentive to report 1

2
for experts with b

(t)
i = 1

2
. Next, observe that since

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 99

f(1
2
, 0), f(1

2
, 1) ∈ [0, 1] and f(1

2
, 0)+f(1

2
, 1) = 1+2µ, it must be that f(1

2
, 0) ·f(1

2
, 1) ≥

2µ. Using this it follows that:

(
1 + η(f(1

2
, 0)− 1)

) (
1 + η(f(1

2
, 1)− 1)

)

= 1 + η ·
(
f(1

2
, 0) + f(1

2
, 1)− 2

)
+ η2

(
f(1

2
, 0) · f(1

2
, 1)− f(1

2
, 0)− f(1

2
, 1) + 1

)

= 1 + η · (1 + 2µ− 2) + η2
(
f(1

2
, 0) · f(1

2
, 1)− 2µ

)

≥ 1− η(1− 2µ) + η2 (2µ− 2µ)

= 1− η + 2µη (5.3)

Now this can be used in the same way as we proved the setting before:

Lemma 5.23. Let F be a family of scoring rules generated by a normalized strictly
proper scoring rule f , with f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0). In the worst case,
MW with any scoring rule f ′ from F with η ∈ (0, 1

2
) can do no better than

M (T) ≥
(

2 +
1

dµ−1e

)
·m(T)

i .

Proof Sketch. Take the same instance as used in Lemma 5.20, with α = 2dµ−1e
2dµ−1e+1

. The
progression of the algorithm up to t = αT is identical in this case, as expert e1 is
indifferent between outcomes, and f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0) for experts
e2 and e3. What remains to be shown is that the weight of e1 will be higher at time
T . At time T the weights of e1 and e2 are:

a−Tw
(T)
1 =

(
1 + η(f(1

2
, 0)− 1)

)αT
2
(
1 + η(f(1

2
, 1)− 1)

)αT
2 (1− η)(1−α)T

a−Tw
(T)
2 = (1− η)

αT
2 .

Similarly to the symmetric case, wee know that w
(T)
1 > w

(T)
2 if we can show that

(
1 + η(f(1

2
, 0)− 1)

)dµ−1e (
1 + η(f(1

2
, 1)− 1)

)dµ−1e
(1− η) > (1− η)dµ

−1e .

By (5.3), it suffices to show that (1− η + 2µη)dµ
−1e (1−η) > (1− η)dµ

−1e, which holds
by following the derivation in the proof of Lemma 5.20 given in the appendix, starting
at (5.6).

The asymmetric case. We finally consider the setting where the weight-update
rule is not symmetric, nor is it symmetric evaluated only at the extreme reports. The
lower bound that we show is based on the amount of asymmetry at these extreme
points, and is parametrized as follows.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 100

Definition 5.24. Let c > d be parameters of a normalized strictly proper scoring rule
f , such that c = 1−max{f(0, 1), f(1, 0)} and d = 1−min{f(0, 0), f(1, 1)}.

Scoring rules that are not covered by Lemmas 5.20 or 5.23 must have either c < 1
or d > 0 or both. The intuition behind the lower bound instance is that two experts
who have opposite predictions, and are alternatingly right and wrong, will end up
with different weights, even though they have the same loss. We use this to show that
eventually one expert will have a lower loss, but also a lower weight, so the algorithm
will follow the other expert. This process can be repeated to get the bounds in the
Lemma below. The proof of the lemma appears in the appendix.

Lemma 5.25. Let F be a family of scoring rules generated by a normalized strictly
proper scoring rule f , with not both f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0) and pa-
rameters c and d as in Definition 5.24. In the worst case, MW with any scoring rule
f ′ from F with η ∈ (0, 1

2
) can do no better than

M (T) ≥
(

2 + max{1−c
2c
, d
4(1−d)}

)
·m(T)

i .

Theorem 5.17 now follows from combining the previous three lemmas.

Proof of Theorem 5.17. Follows from combining Lemmas 5.20, 5.23 and 5.25.

5.5 The Cost of Selfish Experts for Non-IC Algo-

rithms

What about non-incentive-compatible algorithms? Could it be that, even with ex-
perts reporting strategically instead of honestly, there is a deterministic no 2-regret
algorithm (or a randomized algorithm with vanishing regret), to match the classical
results for honest experts? Proposition 5.13 shows that the standard algorithm fails
to achieve such a regret bound, but maybe some other non-IC algorithm does?

Typically, one would show that this is not the case by a “revelation principle”
argument: if there exists some (non-IC) algorithm A with good guarantees, then we
can construct an algorithm B which takes private values as input, and runs algorithm
A on whatever reports a self-interested agent would have provided to A. It does
the strategic thinking for agents, and hence B is an IC algorithm with the same
performance as A. This means that generally, whatever performance is possible with
non-IC algorithms can be achieved by IC algorithms as well, thus lower bounds for
IC algorithms translate to lower bounds for non-IC algorithms. In our case however,
the reports impact both the weights of experts as well as the decision of the algorithm
simultaneously. Even if we insist on keeping the weights in A and B the same, the

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 101

decisions of the algorithms may still be different. Therefore, rather than relying on
a simulation argument, we give a direct proof that, under mild technical conditions,
non-IC deterministic algorithms cannot be no 2-regret.10 As in the previous section,
we focus on deterministic algorithms; Section 5.6 translates these lower bounds to
randomized algorithms, where they imply that no vanishing-regret algorithms exist.

The following definition captures how players are incentivized to report differently
from their beliefs.

Definition 5.26 (Rationality Function). For a weight update function f , let ρf :
[0, 1] → [0, 1] be the function from beliefs to predictions, such that reporting ρf (b) is
rational for an expert with belief b.

We restrict our attention here on rationality functions that are proper functions,
meaning that each belief leads to a single prediction. Note that for incentive compat-
ible weight update functions, the rationality function is simply the identity function.

Under mild technical conditions on the rationality function, we show our main
lower bound for (potentially non-IC) algorithms.11

Theorem 5.27. For a weight update function f with continuous or non-strictly in-
creasing rationality function ρf , there is no deterministic no 2-regret algorithm.

Note that Theorem 5.27 covers the standard algorithm, as well as other common

update rules such as the Hedge update rule fHedge(p
(t)
i , r

(t)) = e−η|p
(t)
i −r

(t)| [Freund and
Schapire, 1997], and all IC methods, since they have the identity rationality function
(though the bounds in Thm 5.17 are stronger).

We start with a proof that any algorithm with non-strictly increasing rationality
function must have worst-case loss strictly more than twice the best expert in hind-
sight. Conceptually, the proof is a generalization of the proof for Proposition 5.13.

Lemma 5.28. Let f be a weight update function with a non-strictly increasing ra-
tionality function ρf , such that there exists b1 < b2 with ρf (b1) ≥ ρf (b2). For every
deterministic algorithm, in the worst case

M (T) ≥ (2 + |b2 − b1|)m(T)
i .

Proof. Fix, f , b1 and b2 such that ρf (b1) ≥ ρf (b2) with b1 < b2. Let π1 = ρf (b1),
π2 = ρf (b2), b0 = 1− b2+b1

2
, and π0 = ρf (b0).

10Similarly to Price of Anarchy (PoA) bounds, e.g. [Roughgarden and Tardos, 2007], the results
here show the harm of selfish behavior. Unlike PoA bounds, we sidestep the question of equilibrium
concepts and our results are additive rather than multiplicative.

11This holds even when the learning rate is parameterized similarly to Definition 5.15, as the
rationality function does not change for different learning rates due to the linearity of the expectation
operator.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 102

Let there be two experts e0 and e1. Expert e0 always predicts π0 with belief b0.
If π1 = π2, e1 predicts π1 (similar to Proposition 5.13, we first fix the predictions of
e1, and will give consistent beliefs later). Otherwise π1 > π2, and expert e1 has the
following beliefs (and corresponding predictions) at time t:

b
(t)
1 =

b1 if

w
(t)
0 π0+w

(t)
1 π2

w
(t)
0 +w

(t)
1

≥ 1
2

b2 otherwise

The realizations are opposite of the algorithm’s decisions.
We now fix the beliefs of e1 in the case that π1 = π2. Whenever r(t) = 1, set

expert e1’s belief to b2, and whenever r(t) = 0, set her belief to b1. Note that the
beliefs indeed lead to the predictions she made, by the fact that π1 = ρf (b1) = ρf (b2).

For the case where π1 > π2, if (w
(t)
0 π0 + w

(t)
1 π2)/(w

(t)
0 + w

(t)
1) ≥ 1

2
then e1’s belief

will be b1 leading to a report of π1 and as π1 > π2 it must hold that (w
(t)
0 π0 +

w
(t)
1 π1)(w

(t)
0 +w

(t)
1) > 1

2
, hence the algorithm will certainly choose 1, so the realization

is 0. Conversely, if (w
(t)
0 π0 + w

(t)
1 π2)(w

(t)
0 + w

(t)
1) < 1

2
, then the belief of e1 will be b2

and her report will lead the algorithm to certainly choose 0, so the realization is 1.
So in all cases, if the realization is 1, then the belief of expert e1 is b2 and otherwise
it is b1.

The total number of mistakes M (T) for the algorithm after T time steps is T
by definition. Every time the realization was 1, e0 will incur loss of b1+b2

2
and e1

incurs a loss of 1 − b2, for a total loss of 1 − b2 + b1+b2
2

= 1 − b2−b1
2

. Whenever the

realization was 0, e0 incurs a loss of 1− b1+b2
2

and e1 incurs a loss of b1 for a total loss

of 1− b1+b2
2

+ b1 = 1− b2−b1
2

.

So the total loss for both of the experts is
(
1− b2−b1

2

)
· T , so the best expert in

hindsight has m
(T)
i ≤ 1

2

(
1− b2−b1

2

)
· T . Rewriting yields the claim.

For continuous rationality functions, we can generalize the results in Section 5.4
using a type of simulation argument. First, we address some edge cases.

Proposition 5.29. For a weight update function f with continuous strictly increasing
rationality function ρf ,

1. the regret is unbounded unless ρf (0) < 1
2
< ρ(1); and

2. if ρf (b) = 1
2

for b 6= 1
2
, the worst-case loss of the algorithm satisfies M (T) ≥

(2 + |b− 1/2|)m(T)
i .

Proof. First, assume that it does not hold that ρf (0) < 1
2
< ρf (1). Since ρf (0) < ρf (1)

by virtue of ρf being strictly increasing, it must be that either 1
2
≤ ρf (0) < ρf (1)

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 103

or ρf (0) < ρf (1) ≤ 1
2
. Take two experts with b

(t)
1 = 0 and b

(t)
2 = 1. Realizations are

opposite of the algorithm’s predictions. Even though the experts have opposite beliefs,
their predictions agree (potentially with one being indifferent), so the algorithm will
consistently pick the same prediction, whereas one of the two experts will never make
a mistake. Therefore the regret is unbounded.

As for the second statement. Since ρf (0) < 1
2
< ρf (1), there is some b such that

ρf (b) = 1
2
. Wlog, assume b < 1

2
(the other case is analogous). Since ρf is continuous

and strictly increasing, ρf (
b+1/2

2
) > 1

2
while b+1/2

2
< 1

2
. Take one expert e1 with belief

b(t) = b+1/2
2

< 1
2
, who will predict p(t) = ρf (

b+1/2
2

) > 1
2
. Realizations are opposite of

the algorithms decisions, and the algorithms decision is consistently 1, due to there
only being one expert, and that expert putting more weight on 1. However, the
absolute loss of the expert is only 1

2
− |b−1/2

2
at each time step. Summing over the

timesteps and rewriting yields the claim.

We are now ready to prove the main result in this section. The proof gives lower
bound constants that are similar (though not identical) to the constants given in
Lemmas 5.20, 5.23 and 5.25, though due to a reparameterization the factors are not
immediately comparable. The proof appears in the appendix.

Theorem 5.30. For a weight update function f with continuous strictly increasing
rationality function ρf , with ρf (0) < 1

2
< ρf (1) and ρf (

1
2
) = 1

2
, there is no determin-

istic no 2-regret algorithm.

Theorem 5.27 now follows from Lemma 5.28, Proposition 5.29 and Theorem 5.30.

5.6 Randomized Algorithms: Upper and Lower

Bounds

5.6.1 Impossibility of Vanishing Regret

We now consider randomized online learning algorithms, which can typically achieve
better worst-case guarantees than deterministic algorithms. For example, with hon-
est experts, there are randomized algorithms that have a worst-case loss of M (T) ≤(

1 +O
(

1√
T

))
m

(T)
i , which means that the regret with respect to the best expert

in hindsight is vanishing as T → ∞. Unfortunately, the lower bounds in Sec-
tions 5.4 and 5.5 below imply that no such result is possible for randomized algo-
rithms.

Corollary 5.31. Any incentive compatible randomized weight-update algorithm or
non-IC randomized algorithm with continuous or non-strictly increasing rationality
function cannot be no 1-regret.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 104

Proof. We can use the same instances as for Theorems 5.17 and 5.30 and Lemma 5.28
(whenever the algorithm was indifferent, the realizations were defined using the algo-
rithm’s tie-breaker rule; in the current setting simply pick any realization, say rt = 1).

Whenever the algorithm made a mistake, it was because
∑

iw
t
is
t
i ≥ 1

2

∑
iw

t
i .

Therefore, in the randomized setting, it will still incur an expected loss of at least 1
2
.

Therefore the total expected loss of the randomized algorithm is at least half that of
the deterministic algorithm. Since the approximation factor for the latter is bounded
away from 2 in all cases in Theorems 5.17 and 5.30 and Lemma 5.28, in these cases
the worst-case loss of a randomized algorithm satisfies M (T) ≥ (1 + Ω(1))m

(T)
i .

5.6.2 An IC Randomized Algorithm for Selfish Experts

While we cannot hope to achieve a no-regret algorithm for online prediction with
selfish experts, we can do better than the deterministic algorithm from Section 5.3.
We now focus on the more general class of algorithms where the algorithm can make
any prediction q(t) ∈ [0, 1] and incurs a loss of |q(t) − r(t)|. We give a randomized
algorithm based on the Brier strictly proper scoring rule with loss at most 2.62 times
that of the best expert as T →∞.

Perhaps the most natural choice for a randomized algorithm is to simply report
a prediction of q(t) =

∑n
i=1w

(t)
i p

(t)
i /
∑n

j=1w
(t)
j . However, this is problematic when

the experts are highly confident and correct in their predictions. By the definition
of a (bounded) strictly proper scoring rule, d

dp
(t)
i

f(p
(t)
i , 1) is 0 at 1 (and similarly the

derivative is 0 around 0 for a realization of 0). This means that experts that are
almost certain and correct will not have their weight reduced meaningfully, and so
the proof that uses the potential function does not go through.

This motivates looking for an algorithm where the sum of weights of experts is
guaranteed to decrease significantly whenever the algorithm incurs a loss. Consider
the following generalization of RWM that rounds predictions to the nearest integer if
they are with θ of that integer.

Definition 5.32 (θ-randomized weighted majority). Let Ar be the class of algorithms

that maintains expert weights as in Definition 5.2. Let b(t) =
∑n

i=1
w

(t)
i∑n

j=1 w
(t)
j

·p(t)i be the

weighted predictions. For parameter θ ∈ [0, 1
2
] the algorithm chooses 1 with probability

p(t) =

0 if b(t) ≤ θ

b(t) if θ < b(t) ≤ 1− θ
1 otherwise.

We call algorithms in Ar θ-RWM algorithms. We’ll use a θ-RWM algorithm with
the Brier rule. Recall that s

(t)
i = |p(t)i − r(t)|; the Brier rule is defined as:

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 105

fBr(p
(t)
i , r

(t)) = 1− η
(

(p
(t)
i)2 + (1− p(t)i)2 + 1

2
− (1− s(t)i)

)
. (5.4)

Theorem 5.33. Let A ∈ Ar be a θ-RWM algorithm with the Brier weight update
rule fBr and θ = 0.382 and with η = O(1/

√
T) ∈ (0, 1

2
). A has no 2.62-regret.

The proof appears in the appendix.

5.7 Simulations

The theoretical results presented so far indicate that when faced with selfish experts,
one should use an IC weight update rule, and ones with smaller scoring rule gap are
better. Two objections to these conclusions are: first, the presented results are worst-
case, and different instances are used to obtain the bounds for different scoring rules.
A priori it is not obvious that for an arbitrary (non worst-case) input, the regret of
different scoring rules follow the same relative ordering. It is of particular interest
to see if the non-IC standard weight-update rule does better or worse than the IC
methods proposed in this paper. Second, there is a gap between our upper and lower
bounds for IC rules. It is therefore informative to look at different instances for which
we expect our algorithms to do badly, to see if the performance is closer to the upper
bound or to the lower bound.

5.7.1 Data-Generating Processes

To address these two concerns, we look at three different data-generating processes.

Hidden Markov Model. The experts are represented by a simple two-state hidden
Markov model (HMM) with a “good” state and a “bad” state. We first flip a fair
coin to determine the realization r(t). For r(t) = 0 (otherwise beliefs are reversed), in

the good state expert i believes b
(t)
i ∼ min{Exp(1)/5, 1}: the belief is exponentially

distributed with parameter λ = 1, values are rescaled by 1
5

and clamped between 0

and 1. In the bad state, expert i believes b
(t)
i ∼ U[1

2
, 1]. The transition probabilities

to move to the other state are 1
10

for both states. This data generating process models
that experts that have information about the event are more accurate than experts
who lack the information.

Lower Bound Instance. The lower bound instance described in the proof of
Lemma 5.20.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 106

Greedy Lower Bound. A greedy version of the lower bound described the proof
of Lemma 5.20. There are 3 experts, one (e0) who is mostly uninformative, and two
(e1 and e2) who are alternating correct and incorrect. Whenever the weight of e0
is “sufficiently” higher than that of e1 and e2, we have “punish the algorithm” by
making e0 wrong twice: b

(t)
0 = 0, b

(t)
1 = 1, b

(t)
2 = 1

2
, r(t) = 1, and b

(t+1)
0 = 0, b

(t)
1 = 1

2
,

b
(t)
0 = 1, r(t) = 1. “Sufficiently” here means that weight of e0 is high enough for the

algorithm to follow its advice during both steps.

5.7.2 Results

Hidden Markov Model Data. In Figure 5.1 we show the regret as a function of
time for the standard weight-update function, the Brier scoring rule, the spherical
scoring rule, and a scoring rule from the Beta family [Buja et al., 2005] with α = β =
1
2
. The expert’s report p

(t)
i for the IC methods correspond to their belief b

(t)
i , whereas

for the standard weight-update rule, the expert reports p
(t)
i = 1 if b

(t)
i ≥ 1

2
and p

(t)
i = 0

otherwise. The y axis is the ratio of the total loss of each of the algorithms to the
performance of the best expert at that time. For clarity, we include the performance
of the best expert at each time step, which by definition is 1 everywhere. The plot is
for 10 experts, T = 10, 000, η = 10−2, and the randomized12 versions of the algorithms
(we return to why in a moment), averaged over 30 runs.

From the plot, we can see that each of the IC methods does significantly better
than the standard weight-update algorithm. Whereas the standard weight-update
rule levels off between 1.15 and 1.2, all of the IC methods dip below a regret of 1.05
at T = 2, 000 and hover around 1.02 at T = 10, 000. This trend continues and at
T = 200, 000 (not shown in the graph), the IC methods have a regret of about 1.003,
whereas the regret for the standard algorithm is still 1.14. This gives credence to the
notion that failing to account for incentive issues is problematic beyond the worst-case
bounds presented earlier.

Moreover, the plot shows that while there is a worst-case lower bound for the IC
methods that rules out no-regret, for quite natural synthetic data, the loss of all the
IC algorithms approaches that of the best expert in hindsight, while the standard
algorithm fails to do this. It curious to note that the performance of all IC methods
are comparable (at least for this data-generating process). This seems to indicate
that eliciting the truthful beliefs of the experts is more important than the exact
weight-update rule.

Finally, note that the results shown here are for randomized weighted majority,
using the different weight-update rules. For the deterministic version of the algorithms
the difference between the non-IC standard weight-update rules and the IC ones

12Here we use the regular RWM algorithm, so in the notation of Section 5.6 we have θ = 0.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 107

0 2000 4000 6000 8000 10000
T

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35
tim

e-
av

er
ag

ed
 r

eg
re

t
standard
Brier
beta .5
spherical
best expert

Figure 5.1: The time-averaged regret for the HMM data-generating process.

is even starker. Different choices for the transition probabilities of the HMM, and
different distributions, e.g. the bad state has b

(t)
i ∼ U[0, 1], give similar results to the

ones presented here.

Comparison of LB Instances. Now let’s focus on the performance of different
IC algorithms. First, in Figure 5.2 we show the regret for different algorithms on the
greedy lower bound instance. Note that this instance is different from the one used in
the proof of Lemma 5.20, but the regret is very close to what is obtained there. In fact,
when we look at Table 5.1, we can see that very closely traces 2 + γ. In Table 5.1 we

Table 5.1: Comparison of lower bound results with simulation. The simulation is
run for T = 10, 000, η = 10−4 and we report the average of 30 runs. For the lower
bounds, the first number is the lower bound from Lemma 5.20, i.e. 2 + 1

dγ−1e , the

second number (in parentheses) is 2 + γ.

Beta .1 Beta .5 Beta .7 Beta .9 Brier Spherical

Greedy LB 2.3708 2.2983 2.2758 2.2584 2.2507 2.2071
LB Sim 2.4414 2.3186 2.2847 2.2599 2.2502 2.2070

Lem 5.20 LB 2.33 (2.441) 2.25 (2.318) 2.25 (2.285) 2.25 (2.260) 2.25 2.2 (2.207)

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 108

0 1000 2000 3000 4000 5000
T

2.0

2.1

2.2

2.3

2.4

2.5
tim

e-
av

er
ag

ed
 r

eg
re

t

beta .1
beta .5
beta .7
Brier
spherical

Figure 5.2: Regret for the greedy lower bound instance.

can also see the numerical results for the lower bound from Lemma 5.20. In fact, for
the analysis, we needed to use dγ−1e when determining the first phase of the instance.
When we use γ instead numerically, the regret seems to trace 2+γ quite closely, rather
than the weaker proven lower bound of 2 + 1

dγ−1e . By using two different lower bound

constructions, we can see that the analysis of Lemma 5.20 is essentially tight (up to
the rounding of γ), though this does not exclude the possibility that stronger lower
bounds are possible using more properties of the scoring rules (rather than only the
scoring rule gap γ). In these experiments (and others we have performed), the regret
of IC methods never exceeds the lower bound we proved in Lemma 5.20. Closing
the gap between the lower and upper bound requires finding a different lower bound
instance, or a better analysis for the upper bound.

Chapter Appendix

5.A Omitted Proofs

5.A.1 Proof of Theorem 5.12

The WM algorithm with weight-update rule (5.2) for η = O(1/
√
T) < 1

2
has no

(2 +
√

2)-regret.

Proof. We use an intermediate potential function Φ(t) =
∑

iw
(t)
i . Whenever the

algorithm incurs a loss, the potential must decrease substantially. For the algorithm
incur a loss, it must have picked the wrong outcome. Therefore it loss |r(t)− t(t)| = 1

and
∑

iw
(t)
i s

(t)
i ≥ 1

2
·Φ(t). We use this to show that in those cases the potential drops

significantly:

Φ(t+1) =
∑

i

1− η

1− 1− s(t)i√(

p
(t)
i

)2
+
(

1− p(t)i
)2

 · w

(t)
i

≤
∑

i

(
1− η

(
1−
√

2
(

1− s(t)i
)))

· w(t)
i

(
since min

x
x2 + (1− x)2 =

1

2

)

= (1− η) Φ(t) +
√

2η
∑

i

(
1− s(t)i

)
w

(t)
i

≤ (1− η) Φ(t) +

√
2η

2
Φ(t)

(
since

∑

i

w
(t)
i

(
1− s(t)i

)
≤ 1

2
Φ(t)

)

=

(
1− 2−

√
2

2
η

)
Φ(t)

109

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 110

Since initially Φ0 = n, after M (T) mistakes, we have:

ΦT ≤ n

(
1− 2−

√
2

2
η

)M(T)

. (5.5)

Now, let’s bound the final weight of expert i in terms of the number of mistakes she
made:

w
(T)
i =

∏

t

1− η

1− 1− s(t)i√(

p
(t)
i

)2
+
(

1− p(t)i
)2

≥
∏

t

(
1− ηs(t)i

) (
since max

x∈[0,1]
x2 + (1− x)2 = 1

)

≥
∏

t

(1− η)s
(t)
i (since 1− ηx ≥ (1− η)x for x ∈ [0, 1])

= (1− η)
∑

t s
(t)
i

= (1− η)m
(T)
i

Combining this with w
(t)
i ≤ Φ(t) and (5.5), and taking natural logarithms of both

sides we get:

ln
(

(1− η)m
(T)
i

)
≤ ln

n

(
1− 2−

√
2

2
η

)M(T)

m
(T)
i · ln(1− η) ≤M (T) · ln

(
1− 2−

√
2

2
η

)
+ lnn

m
(T)
i ·

(
−η − η2

)
≤M (T) · ln

(
exp

(
−2−

√
2

2
η

))
+ lnn

m
(T)
i ·

(
−η − η2

)
≤M (T) · −2−

√
2

2
η + lnn

M (T) ≤
(

2

2−
√

2

)
·
(

(1 + η)m
(T)
i +

lnn

η

)

where in the third inequality we used −η − η2 ≤ ln(1 − η) for η ∈ (0, 1
2
). Rewriting

the last statement proves the claim.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 111

5.A.2 Proof of Lemma 5.20

Let F be a family of scoring rules generated by a symmetric strictly proper scoring
rule f , and let γ be the scoring rule gap of F . In the worst case, MW with any scoring
rule f ′ ∈ F with η ∈ (0, 1

2
), algorithm loss M (T) and expert loss m

(T)
i , satisfies

M (T) ≥
(

2 +
1

dγ−1e

)
·m(T)

i .

Proof. Let a, η be the parameters of f ′ in the family F , as in Definition 5.15. Fix
T sufficiently large and an integer multiple of 2dγ−1e + 1, and let e1, e2, and e3 be

three experts. For t = 1, ..., α · T where α = 2dγ−1e
2dγ−1e+1

such that αT is an even integer,

let p
(t)
1 = 1

2
, p

(t)
2 = 0, and p

(t)
3 = 1. Fix any tie-breaking rule for the algorithm.

Realization r(t) is always the opposite of what the algorithm chooses.
Let M (t) be the loss of the algorithm up to time t, and let m

(t)
i be the loss of

expert i. We first show that at t′ = αT , m
(t′)
1 = m

(t′)
2 = m

(t′)
3 = αT

2
and M (t′) = αT .

The latter part is obvious as r(t) is the opposite of what the algorithm chooses. That

m
(t′)
1 = αT

2
is also obvious as it adds a loss of 1

2
at each time step. To show that

m
(t′)
2 = m

(t′)
3 = αT

2
we do induction on the number of time steps, in steps of two. The

induction hypothesis is that after an even number of time steps, m
(t)
2 = m

(t)
3 and that

w
(t)
2 = w

(t)
3 . Initially, all weights are 1 and both experts have loss of 0, so the base case

holds. Consider the algorithm after an even number t time steps. Since w
(t)
2 = w

(t)
3 ,

p
(t)
3 = 1 − p

(t)
2 , and p

(t)
1 = 1

2
we have that

∑3
i=1w

(t)
i p

(t)
i =

∑3
i=1w

(t)
i (1 − p

(t)
i) and

hence the algorithm will use its tie-breaking rule for its next decision. Thus, either
e2 or e3 is wrong. Wlog let’s say that e2 was wrong (the other case is symmetric),

so m
(t+1)
2 = 1 + m

(t+1)
3 . Now at time t + 1, w

(t+1)
2 = (1 − η)w

(t+1)
3 < w

(t+1)
3 . Since e1

does not express a preference, and e3 has a higher weight than e2, the algorithm will
follow e3’s advice. Since the realization r(t+1) is the opposite of the algorithms choice,
this means that now e3 incurs a loss of one. Thus m

(t+2)
2 = m

(t+1)
2 and w

(t+2)
2 = w

(t+1)
2

and m
(t+2)
3 = 1 + m

(t+1)
3 = m

(t+2)
2 . The weight of expert e2 is w

(t+2)
2 = aa(1 − η)w

(t)
2

and the weight of expert e3 is w
(t+2)
3 = a(1 − η)aw

(t)
3 . By the induction hypothesis

w
(t)
2 = w

(t)
3 , hence w

(t+2)
2 = w

(t+2)
3 , and since we already showed that m

(t+2)
2 = m

(t+2)
3 ,

this completes the induction.
Now, for t = αT + 1, ..., T , we let p

(t)
1 = 1, p

(t)
2 = 0, p

(t)
3 = 1

2
and r(t) = 0. So

henceforth e3 does not provide information, e1 is always wrong, and e2 is always
right. If we can show that the algorithm will always follow e1, then the best expert
is e2 with a loss of m

(T)
2 = αT

2
, while the algorithm has a loss of M (T) = T . If

this holds for α < 1 this proves the claim. So what’s left to prove is that the
algorithm will always follow e1. Note that since p

(t)
3 = 1

2
it contributes equal amounts

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 112

to
∑3

i=1w
(t)
i p

(t)
i and

∑3
i=1w

(t)
i (1 − p(t)i) and is therefore ignored by the algorithm in

making its decision. So it suffices to look at e1 and e2. The algorithm will pick 1 iff∑3
i=1w

(t)
i (1− p(t)i) ≤∑3

i=1w
(t)
i p

(t)
i , which after simplifying becomes w

(t)
1 > w

(t)
2 .

At time step t, w
(t)
1 =

(
a(1 + η(f(1

2
)− 1))

)αT
(a · (1 − η))t−αT for expert e1 and

w
(t)
2 = (a(1− η))

αT
2 a

αT
2

+t−αT for expert e2. We have that w
(t)
1 is decreasing faster in

t than w
(t)
2 . So if we can show that w

(T)
1 ≥ w

(T)
2 for some α < 1, then e2 will incur a

total loss of αT/2 while the algorithm incurs a loss of T and the statement is proved.

We have that w
(t)
1 is decreasing faster in t than w

(t)
2 . So if we can show that at

time T , w
(T)
1 ≥ w

(T)
2 for some α < 1, then e2 will incur a total loss of αT while the

algorithm incurs a loss of T and the statement is proved. First divide both weights
by aT so that we have

a−Tw
(T)
1 =

(
1 + η(f(1

2
)− 1)

)αT
(1− η)(1−α)T

a−Tw
(T)
2 = (1− η)

αT
2 .

Let α = 2dγ−1e
2dγ−1e+1

and recall that T = k · (2dγ−1e+ 1) for positive integer k. Thus
we can write

a−Tw
(T)
1 =

(
1 + η(f(1

2
)− 1)

)k2dγ−1e
(1− η)k

=
((

1 + η(f(1
2
)− 1)

)2dγ−1e
(1− η)

)k

a−Tw
(T)
2 = (1− η)kdγ

−1e

=
(

(1− η)dγ
−1e
)k

So it holds that w
(T)
1 > w

(T)
2 if we can show that

(
1 + η(f(1

2
)− 1)

)2dγ−1e
(1 − η) >

(1− η)dγ
−1e

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 113

(
1 + η(f(1

2
)− 1)

)2dγ−1e
(1− η) =

(
1− (1

2
− γ)η

)2dγ−1e
(1− η) (def. of γ)

≥ (1− η + 2γη)dγ
−1e (1− η) (5.6)

=

(
1− η + 2γη

1− η

)dγ−1e

(1− η)dγ
−1e+1

= (1 + 2γη)dγ
−1e (1− η)dγ

−1e+1

≥
(
1 + dγ−1e2γη

)
(1− η)dγ

−1e+1

≥ ((1 + 2η) (1− η)) (1− η)dγ
−1e

> (1− η)dγ
−1e (for η < 1

2
)

Therefore expert e2 will not incur any more loss during the last stage of the
instance, so her total loss is m

(T)
i = kdγ−1e while the loss of the algorithm is M (T) =

T = k · (2dγ−1e+ 1). So

M (T)

m
(t)
i

≥ k · (2dγ−1e+ 1)

kdγ−1e = 2 +
1

dγ−1e

rearranging proves the claim.

5.A.3 Proof of Lemma 5.25

Let F be a family of scoring rules generated by a normalized strictly proper scoring
rule f , with not both f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0) and parameters c and d
as in Definition 5.24. In the worst case, MW with any scoring rule f ′ from F with
η ∈ (0, 1

2
) can do no better than

M (T) ≥
(

2 + max{1−c
2c
, d
4(1−d)}

)
·m(T)

i .

Proof. Fix f , and without loss of generality assume that f(0, 0) = 1 (since f is
normalized, either f(0, 0) or f(1, 1) needs to be 1, rename if necessary). As f is
normalized, at least one of f(0, 1) and f(1, 0) needs to be 0. For now, we consider the
case where f(0, 1) = 0, we treat the other case later. For now we have f(0, 0) = 1,
f(0, 1) = 0, and by definition 5.24, f(1, 0) = 1 − c and f(1, 1) = 1 − d, where
c > d (since correctly reporting 1 needs to score higher than reporting 0 when 1
materialized) and ¬(c = 1 ∧ d = 0) (since that would put us in the semi-symmetric
case).

We construct an instance as follows. We have two experts, e0 reports 0 always,

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 114

and e1 reports 1 always, and as usual, the realizations are opposite of the algorithms
decisions. Since the experts have completely opposite predictions, the algorithm will
follow whichever expert has the highest weight. We will show that after a constant
number of time steps t, the weight w

(t)
0 of e0 will be larger than the weight w

(t)
1 of

e1 even though e0 will have made one more mistake. Note that when this is true
for some t independent of η, this implies that the algorithm cannot do better than
2 t
t−1 > 2 + 2

t
.

While it hasn’t been the case that w
(t)
0 > w

(t)
1 with m

(t)
0 = m

(t)
1 + 1, realizations

alternate, and the weight of each expert is:

w
(2t)
0 = a2t(1 + η(f(0, 0)− 1))t(1 + η(f(0, 1)− 1))t

= a2t(1 + η(1− 1))t(1 + η(1− c− 1))t

= a2t(1− cη)t (5.7)

w
(2t)
1 = a2t(1 + η(f(1, 1)− 1))t(1 + η(f(1, 0)− 1))t

= a2t(1 + η((1− d)− 1))t(1 + η(0− 1))t

= a2t(1− dη)t(1− η)t (5.8)

What remains to be shown is that for some t independent of η,

a2t+1(1− cη)t+1 > a2t+1(1− dη)t+1(1− η)t.

We know that it cannot be the case that simultaneously c = 1 and d = 0, so
let’s first consider the case where c < 1. In this case, it is sufficient to prove the
above statement assuming d = 0, as this implies the inequality for all d ∈ [0, c). The
following derivation shows that a2t+1(1− cη)t+1 > a2t+1(1− dη)t+1(1− η)t whenever
c

(1−c) < t.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 115

a2t+1(1− cη)t+1 > a2t+1(1− dη)t+1(1− η)t

(1− cη)t+1 > (1− η)t (d = 0)

(1− cη) >

(
1− η
1− cη

)t

ln(1− cη) > t · ln
(

1− η
1− cη

)

1− 1

1− cη > t ·
(

1− η
1− cη − 1

)
(1− 1

x
≤ lnx ≤ x− 1)

1− cη − 1

1− cη > t ·
(

1− η − 1 + cη

1− cη

)

cη

1− cη < t · (1− c)η
1− cη

cη

(1− c)η < t

c

(1− c) < t

So after 2t + 1 time steps for some t ≤ c
1−c + 1, expert e0 will have one more

mistake than expert e1, but still have a higher weight. This means that after at most
another 2t+ 1 time steps, she will have two more mistakes, yet still a higher weight.
In general, the total loss of the algorithm is at least 2 + 1−c

c
times that of the best

expert. Now consider the case where c = 1 and therefore d > 0. We will show that
after 2t + 1 time steps for some t ≤ 21−d

d
+ 1 expert e0 will have one more mistake

than expert e1.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 116

a2t(1− cη)t+1 > a2t(1− dη)t(1− η)t(1− dη)

(1− η)t+1 > (1− dη)t+1(1− η)t (c = 1)

1− η
1− dη > (1− dη)t

ln

(
1− η
1− dη

)
> t ln(1− dη)

1− 1− dη
1− η > t(1− dη − 1) (1− 1

x
≤ lnx ≤ x− 1)

1− η − 1 + dη

1− η > −tdη

(1− d)η

1− η < tdη

1− d
d

1

1− η < t

2
1− d
d

< t (by η < 1
2
)

So in any case, after t ≤ 2 max{ c
1−c ,

1−d
d
} + 1 time steps so the loss compared to

the best expert is at least
2 + max{1−c

c
, d
2(1−d)}.

What remains to be proven is the case where f(0, 1) > 0. In this case, it will have
to be that f(1, 0) = 0, as f is normalized. And similarly to before, by Definition 5.24,
we have f(0, 1) = 1 − c and f(1, 1) = 1 − d for c > d and ¬(c = 1 ∧ d = 0). Now,

whenever w
(t)
o > w1(t), e0 will predict 1 and e1 predicts 0, and otherwise e0 predicts 0

and e1 predicts 1. As usual, the realizations are opposite of the algorithm’s decisions.
For now assume tie of the algorithm is broken in favor of e1, then the weights will be
identical to (5.7), (5.8). If the tie is broken in favor of e0 initially, it takes at most
twice as long before e0 makes two mistakes in a row. Therefore, the loss with respect
to the best expert in hindsight of an algorithm with any asymmetric strictly proper
scoring rule is

2 + max{1−c
2c
, d
4(1−d)}.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 117

5.A.4 Proof of Theorem 5.30

For a weight update function f with continuous strictly increasing rationality function
ρf , with ρf (0) < 1

2
< ρf (1) and ρf (

1
2
) = 1

2
, there is no deterministic no 2-regret

algorithm.

Proof. Fix f with ρf (0) < 1
2
< ρf (1) and ρf (

1
2
) = 1

2
. Define p = max{ρf (0), 1−ρf (1)},

so that p and 1 − p are both in the image of ρf and the difference between p and
1 − p is as large as possible. Let b1 = ρ−1(p) and b2 = ρ−1(1 − p) and observe that
b1 <

1
2
< b2.

Next, we rewrite the weight-update function f in a similar way as the normal-
ization procedure similar to Definition 5.15: f(p, r) = a(1 + η(f ′(p, r) − 1)). where
max{f ′(p, 0), f ′(1 − p, 1)} = 1 and min{f ′(p, 1), f ′(1 − p, 0)} = 0. Again we do this
to prove bounds that are not dependent on any learning rate parameter.

Note that the composition of ρf and f , namely f(ρf (p), r) is a strictly proper
scoring rule, since it changes the prediction in the same way as the selfish expert
would do. Since f(ρf (p), r), it must also be that f ′(ρf (p), r) is a strictly proper
scoring rule, since it is a positive affine transformation of f ◦ ρf .13

We now continue similarly to the lower bounds in Section 5.4. We only treat the
semi-symmetric and asymmetric cases as the former includes the special case of the
symmetric weight-update function.

For the semi-symmetric case, by definition f ′(ρf (b1), 0) = f ′(ρf (b2), 1) = 1 and
f ′(p, 0), f ′(1−p, 1)} = 1 and min{f ′(p, 1), f ′(1−p, 0) = 0. Because f ′ ◦ρf is a strictly
proper scoring rule, the following inequality holds:

1
2
f ′(ρf (

1
2
), 0) + 1

2
f ′(ρf (

1
2
, 1)) + µ = 1

2
f ′(ρf (b1), 0) + 1

2
f ′(ρf (

1
2
, 1)) = 1

2

for some µ > 0, since an expert with belief ρf (
1
2
) must have a strict incentive to report

this. Here µ plays the same role as the semi-symmetric scoring rule gap.14

We now pitch three experts against each other in a similar lower bound instance
as Lemma 5.23. For the first stage, they have beliefs b

(t)
0 = 1

2
, b

(t)
1 = b1, b

(t)
2 = b2,

so they have predictions p
(t)
0 = 1

2
, p

(t)
1 = ρf (b1) = p, p

(t)
2 = ρf (b2) = 1 − p. For the

second stage, recall that either b1 = 0 or b2 = 1. In the former case, b
(t)
0 = 1, b

(t)
1 = 0,

b
(t)
2 = 1

2
and r(t) = 0 and in the latter case b

(t)
0 = 0, b

(t)
1 = 1, b

(t)
2 = 1

2
and r(t) = 1. We

now show a bijection between the instance in Lemma 5.23 and this instance, which
establishes the lower bound for the semi-symmetric non-incentive compatible case.
First of all, note that the weights of each of the experts in the first stage is the same

13And since f ′ is a positive affine transformation of f , the rationality function is unchanged due
to the linearity of the expectation operator.

14It is defined slightly differently though, as the image of ρf may not be [0, 1].

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 118

(up to the choice of a and η, and for now assuming that the algorithms choices and
thus the realizations are the same):

w
(2t)
0 = a2t

(
(1 + η(f ′(1

2
, 0)− 1))((1 + η(f ′(1

2
, 1)− 1))

)t

≥ a2t(1− η + 2µη)t (Follows from (5.3))

w
(2t)
1 = a2t (1− η))t

w
(2t)
1 = a2t (1− η))t

In the second stage expert e0 is always wrong and e1 is always right, and hence at
time T the weights

Also note, that the predictions of e1 and e2 are opposite, i.e. p and 1 − p, so
the algorithm will follow the expert which highest weight, meaning the algorithms
decisions and the realizations are identical to the instance in Lemma 5.23.

To complete the proof of the lower bound instance, we need to show that the total
loss of e1 is the same. During the first stage, alternatingly the true absolute loss of
e1 is b1 and 1 − b1, so after each 2 steps, her loss is 1. During the last stage, since
her belief is certain (i.e. b0 if b1 = 0 or b2 if b2 = 1) ans she is correct, she incurs
no additional loss. Therefore the loss of the algorithm and the true loss of e1 are the
same as in Lemma 5.23, hence the loss of the algorithm is at least 1

dµ−1e times that of
the best expert in hindsight.

Finally, we consider the asymmetric case. We use a similar instance as Lemma 5.25
with two experts e0, e1. If f ′(1− p, 0) = 0 we have b

(t)
0 = b1 and b

(t)
1 = b2, so p

(t)
0 = p

and p
(t)
1 = 1 − p, otherwise the beliefs (and thus predictions) alternate. Again, the

predictions are opposite of each other, and the weights evolve identically (up to the
choice of a and η) as before. Again the loss up until the moment that the same expert
is chosen twice in a row is the same.

Once the same expert is chosen twice (after at most 2 max{ c
1−c ,

1−d
d
}+ 1) steps),

it is not necessarily the case that the total loss of one expert exceeds the other by
2, as the true beliefs are b1 and b2, rather than 0 and 1. However, since at least
either b1 = 0 or b2 = 1, and b1 <

1
2
< b2, the difference in total absolute loss in

this non-IC instance is at least half of the IC instance, so we lose at most factor 1
2

in

the regret bound, hence for the asymmetric case M (T) ≥
(

2 + max{1−c
4c
, d
8(1−d)}

)
m

(t)
i ,

completing the proof of the statement.

5.A.5 Proof of Theorem 5.33

Let A ∈ Ar be a θ-RWM algorithm with the Brier weight update rule fBr and θ =
0.382 and with η = O(1/

√
T) ∈ (0, 1

2
). A has no 2.62-regret.

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 119

Proof. The core difference between the proof of this statement, and the proof for
Theorem 5.12 is in giving the upper bound of Φ(t+1). Here we will give an upper
bound of Φ(T) ≤ n · exp

(
− η

2.62
M (T)

)
. Before giving this bound, observe that this

would imply the theorem: since the weight updates are identical to the deterministic

algorithm, we can use the same lower bound for Φ(T), namely Φ(T) ≥ (1− η)m
(T)
i for

each expert. Then taking the log of both sides we get:

lnn− η

2.62
M (T) ≥ m

(T)
i · ln(1− η)

lnn− η

2.62
M (T) ≥ m

(T)
i · (−η − η2)

M (T) ≤ 2.62

(
(1 + η)m

(T)
i +

lnn

η

)

So all that’s left to prove is that whenever the algorithm incurs a loss `, Φ(t+1) ≤
exp

(
− η

2.62
`
)
. At time t, the output q(t) of a θ-RWM algorithm is one of three cases,

depending on the weighted expert prediction. The first options is that the algorithm
reported the realized event, in which case the `(t) = 0 and the statement holds trivially.
We treat the other two cases separately.

Let’s first consider the case where the algorithm reported the incorrect event with
certainty: `(t) = 1. The means that

∑n
i=1w

(t)
i s

(t)
i ≥ (1 − θ)Φ(t). Since the Brier rule

is concave, Φ(t+1) is maximized when s
(t)
i = 1 − θ for all experts i. In this case each

we get

Φ(t+1) ≤
∑

i

(
1− η

(
(p

(t)
i)2 + (1− p(t)i)2 + 1

2
− (1− s(t)i)

))
w

(t)
i

≤
∑

i

(
1− η

(
(θ)2 + (1− θ)2 + 1

2
− θ
))

w
(t)
i

≤
∑

i

(
1− η

2.62

)
w

(t)
i (since θ = .382)

=
(

1− η

2.62
`(t)
)

Φ(t).

Otherwise the algorithms report is between θ and 1 − θ. Let `(t) ∈ [θ, 1 − θ] be
the loss of the algorithm. Again, since the Brier rule is concave, Φ(t+1) is maximized
when s

(t)
i = `(t) for all experts i. On [θ, 1 − θ] the Brier proper scoring rule can be

upper bounded by

1− η

fBr(1− θ, 1)/θ
s
(t)
i = 1− η

2.62
s
(t)
i .

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 120

Figure 5.3: Three different normalized weight-update rules for r(t) = 1. The line
segment is the standard update rule, the concave curve the Brier rule and the other
curve the spherical rule.

This yields

Φ(t+1) ≤
∑

i

(
1− η

(
(p

(t)
i)2 + (1− p(t)i)2 + 1

2
− (1− s(t)i)

))
w

(t)
i

≤
∑

i

(
1− η

2.62
s
(t)
i

)
w

(t)
i

≤
(

1− η

2.62
`(t)
)

Φ(t)

So the potential at time T can be bounded by Φ(T) ≤ n · ∏t

(
1− η

2.62
`(t)
)
≤

n · exp
(
− η

2.62
M (T)

)
, from which the claim follows.

5.B Selecting a Strictly Proper Scoring Rule

When selecting a strictly proper scoring rule for an IC online prediction algorithm,
different choices may lead to very different guarantees. Many different scoring rules
exist [McCarthy, 1956, Savage, 1971], and for discussion of selecting proper scoring
rules in non-online settings, see also [Merkle and Steyvers, 2013]. Figure 5.3 shows
two popular strictly proper scoring rules, the Brier rule and the spherical rule, along
with the standard rule as comparison. Note that we have normalized all three rules
for easy comparison.

Firstly, we know that for honest experts, the standard rule performs close to
optimally. For every δ > 0 we can pick a learning rate η such that as T → ∞

CHAPTER 5. ONLINE PREDICTION WITH SELFISH EXPERTS 121

the loss of the algorithm M (T) ≤ (2 + δ)m
(t)
i , while no algorithm could do better

than M (T) < 2m
(T)
i [Littlestone and Warmuth, 1994, Freund and Schapire, 1997].

This motivates looking at strictly proper scoring rule that are “close” to the standard
update rule in some sense. In Figure 5.3, if we compare the two strictly proper scoring
rules, the spherical rule seems to follow the standard rule better than Brier does.

A more formal way of look at this is to look at the scoring rule gap. In Figure 5.3
we marked the p = 1

2
location. Visually, the scoring rule gap γ is the difference

between a scoring rule and the standard rule at p = 1
2
. Since the Brier score has

a large scoring rule gap, we’re able to prove a strictly stronger lower bound for it:
the scoring rule gap γ = 1

4
, hence MW with the Brier scoring rule cannot do better

than M (T) ≥ (2 + 1
4
)m

(T)
i in the worst case, according to Lemma 5.20. Corollary 5.21

shows that for the Spherical rule, this factor is 2 + 1
5
. The ability to prove stronger

lower bounds for scoring rules with larger gap parameter γ is an indication that it is
probably harder to prove strong upper bounds for those scoring rules.

Chapter 6

Incentives in Bitcoin Mining Pools

In this chapter we continue our approach to model game-theoretical aspects of ap-
plications that have lacked analysis of incentives for participants.1 We introduce a
game-theoretic model for reward functions within a single Bitcoin mining pool. Our
model consists only of an unordered history of reported shares and gives participat-
ing miners the strategy choices of either reporting or delaying when they discover a
share or full solution. We defined a precise condition for incentive compatibility to
ensure miners strategy choices optimize the welfare of the pool as a whole. With this
definition we show that proportional mining rewards are not incentive compatible
in this model. We introduce and analyze a novel reward function which is incen-
tive compatible in this model. Finally we show that the popular reward function
pay-per-last-N-shares is also incentive compatible in a more general model.

6.1 Introduction

By almost any measure, Bitcoin [Nakamoto, 2008] has become the most successful
cryptocurrency in history. While Bitcoin has evolved into a very complex sociotech-
nical system which we will not describe in detail here,2 at its core lies a decentralized
consensus protocol allowing all participants to agree on a common global ledger of
transactions to prevent double-spends and other disallowed behavior. The key to Bit-
coin’s consensus protocol (sometimes more broadly called Nakamoto consensus after
its founder) is a group of entities called miners who race to solve a challenging crypto-
graphic puzzle for the right to append a new block of transactions to Bitcoin’s ledger,
the blockchain. A system of incentives encourages these miners to follow the protocol
faithfully in exchange for the ability to earn newly-minted coins and transaction fees

1This chapter is based on joint work with Joe Bonneau, Dan Boneh and Tim Roughgarden and
was presented at Financial Crypto ’16 [Schrijvers et al., 2016]

2For an academic overview of Bitcoin we refer the reader to [Bonneau et al., 2015].

122

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 123

in proportion to the amount of computational effort they have expended (also called
hashing power or mining power).

Finding a single Bitcoin block is very rewarding (today worth at least B25, over
US$6,000), yet it is also very difficult for smaller miners who might find a block on
expectation only every few months or even every few years. As a result, the majority
of mining power now consists of miners participate in mining pools in which they agree
to divide rewards from blocks found by any member of the pool and thus receive a
steadier stream of income. Choosing the exact algorithm used to divide up mining
pool rewards (the reward function) however, turns out to be a challenging incentive
design problem.

Pools are sometimes controversial in the Bitcoin community as they represent a
form of centralization. Miller et al. [2014] proposed a future cryptocurrency which
attempts to prevent their formation. As of today though they are an indispensable
part of Bitcoin as well as many related cryptocurrencies (to which our analysis also
applies).

Despite their importance to the Bitcoin ecosystem, relatively little work has ana-
lyzed on the reward functions underlying pools. Rosenfeld provided an initial overview
of the space [Rosenfeld, 2011] and introduced pool-hopping attacks, whereby miners
switch between pools to maximize profit. Lewenberg et al. [2015] showed that in cer-
tain circumstances no reward function can prevent all pool-hopping. Several authors
have studied withholding attacks between pools, whereby pools infiltrate compet-
ing pools, collecting rewards but withholding valid shares to damage their competi-
tors [Eyal, 2015, Courtois and Bahack, 2014, Luu et al., 2015]. Counter-intuitively,
this attack can be profitable in some plausible circumstances. Other work has fo-
cused on pools more directly attacking each other via denial-of-service attacks on the
network [Laszka et al., 2015, Johnson et al., 2014].

In this paper we introduce a formal game-theoretical framework to study the re-
ward functions for a single pool in which participants can choose when to report valid
shares can but cannot change pools or solo mine. To the best of our knowledge, ours
is the first treatment of this model and the attacks we describe are novel. We are
motivated by a very natural question: if individual miners are interested in maxi-
mizing their expected utility, is their behavior optimal for the pool as a group? For
example, if miners are incentivized to delay reporting full solutions to the pool, this
may lower the pool’s overall rewards and even make it more vulnerable to external
sabotage [Eyal, 2015]. Although our single-pool model is deliberately simplified, we
still show that some reward functions used in practice such as simple proportional
payments are not incentive compatible.

We introduce a novel reward function which is incentive compatible within our
model while still maintaining other desirable properties. Our reward function will
remain incentive compatible even in a more complex informational model (although

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 124

it may need to be extended if the definition of incentive compatibility is extended to
include more complicated attacks).

While our model cannot capture all reward functions used in practice, we consider
it an important new model in analyzing mining pool reward functions in Bitcoin and
related systems. We further take the first step to analyzing reward functions in
more general informational models by carefully examining the popular pay-per-last-
N-shares reward function, and show that it is incentive compatible. This indicates
that our approach is not limited to the informational assumptions, but can be more
generally applied.

6.2 Preliminaries

In this paper we look at a simple model in which miners are bound to working for
a particular pool and where their strategic choice is the following: if a miner finds a
solution to the cryptographic puzzle, when does it report this to the pool. The pool
is run by a pool operator and contains a fixed number n of miners. Each miner i has
a fraction αi of the total mining power. For most of this paper we will assume that∑n

i=1 αi = 1, meaning that the pool has all the available mining power; there are no
other pools or solo miners. In Appendix 6.C we look at the case where the pools
total hashing power αP =

∑n
i=1 αi < 1 and show that while this makes a quantitative

difference, qualitatively our results carry over.
The time it takes for a miner to find a share is an exponentially distributed random

variable with parameter αi; hence in expectation it takes time 1/αi to find a share.
Each share is also a full solution with probability 1/D.

6.2.1 Reward Functions and History Transcripts

Miners report their shares and solutions to the pool operator. When a solution is
reported, the operator who collects the block reward from the Bitcoin network and
subsequently divides the reward among the n miners according to a reward function
R. The game then restarts. For the mathematical model we assume no variability
in the block reward or the transaction fees, although the work can be extended to
include this.

The reward function is the only way in which the miners receive any payout and
therefore the reward function completely drives the behavior of miners. A perfectly
equitable reward function would simply give each miner i a fraction αi

αP
of the reward

in proportion to the fraction of the pool’s total mining power to which that miner
contributed.

However, the pool operator does not know the actual αi of each miner. The
challenge in designing a reward function R stems from the necessity of estimating this

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 125

based on reported shares and solutions. The operator’s ability to estimate αi depends
on the precise information it has access to. We model this as a history transcript H.
A reward function R : H → [0, 1]n is a function from a history transcript to an
allocation {ai}ni=1 with

∑
i ai = 1. We use Ri : H → [0, 1] to denote the function that

yields the ith component of R.
In most of this paper we analyze the case of an unordered history transcript:3 H

contains for each miner i the total number of shares bi ∈ N that have been reported
in that round.4 Thus, the history transcript is given by a vector b ∈ Nn that contains
for each of the n players the total number of shares that she found during the round
(where the full solution is also counted as a share). We use vector notation for b, so
b1 + b2 means the component-wise addition of b1 and b2, and ||b||1 =

∑n
i=1 bi is the

sum of the components of b.
This model is perhaps the simplest possible5 which enables a mining pool to func-

tion, yet it captures several basic reward function schemes used in practice. There are
also reward functions which require additional information, such as the order in which
shares were reported or reports from previous rounds of the game. In Section 6.8 we
briefly discuss how to generalize this model and the challenges with characterizing in-
centive compatibility for them. However, we stress that positive results demonstrated
incentive compatibility in our simple model extend to any more complicated model,
as the pool operator can always decline to use additional information in its reward
function.

6.2.2 Miner Strategy

Now that we defined a model and the reward function R, let’s look at how the choice
of R impacts the behavior of miners. The goal of any mining pool is to earn as many
rewards as possible for its members.6 If miners delay in reporting blocks to the pool,
this imposes a risk that an external pool may find the block first, undermining the
pool’s potential rewards.7 Note that while we are only modeling a single pool, we
build in the assumption that this pool wants to report solutions as fast as possible to

3In Section 6.6 we consider a strictly more general informational model, which will be described
there.

4We adopt the convention that N includes the number 0.
5A simpler format such as only receiving information about which miner reported a full solution

would only allow a replication of solo mining.
6In this work we are only considering a pool which follows the default mining strategy and

does not attempt to implement an deviant strategies to earn disproportionately more rewards than
competing pools, such as temporary block withholding [Eyal and Sirer, 2014].

7Another way of saying this is that a reward function which does not compel participants to
report solutions immediately is not welfare maximizing, since the selfish behavior of individuals can
hurt the total reward of the group.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 126

the wider network to avoid getting scooped by the competition. Thus we will want
our reward function to ensure solutions to be reported and processed as soon as they
are found.8

In response to a reward rule R, miners choose a strategy σ(R) which dictates
what a miner does when it finds a share or full solution. Ideally the strategy σ(R)
is to report any share or solution immediately. However, the pool operator cannot
directly tell miners what to do; rather they should choose an R such that the miners
corresponding strategy σ(R) is to immediately report. Formally, let t be the time since
miner i started mining, let T be the number of rounds that have been completed at
time t, and let bj be the number of shares per player in round j. Miner i is interested
in maximizing their throughput:

σ(R) := max
σ

lim
t→∞

∑T
j=1Ri(bj)

t
. (6.1)

Here σ impacts the number T of rounds that were completed, as well as the number
of reported shares bj in each round.

6.2.3 Reward Function Desiderata

We define three properties which are important for a reward function. The first is a
formalization of the intuition above:

Property 6.1 (Incentive Compatibility). A reward function R is incentive compati-
ble when every miner’s best response strategy σ(R) reports full solutions immediately.

In Section 6.3 we give a mathematical condition that characterizes Property 6.1,
and that can easily be verified for reward functions.

Next, we require that the pool pays miners in proportion to the amount of work
they have performed. Miners form pools to reduce the variance in revenue. In practice
they might accept losing a small fraction f of their expected value in fees, but we
would like miner performing an αi fraction of the work to receive an αi fraction of
the reward.

Property 6.2 (Proportional Payments). A reward function R provides proportional
payments whenever for each miner i

Eb[Ri(b)] = αi.

8While we do not consider fees in this paper, note that a pool operator would also want to
optimize throughput if collects a fraction of the reward.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 127

Finally, we would like the pool operator to never incur a deficit. That is, the
reward function R should precisely divide the reward among the n miners at the end
of a round. If this is not the case, then either miners may leave some value on the
table, or the pool operator may be liable for more then she received herself. This
latter condition is particularly dangerous, as it leaves the pool exposed to sabotage
attacks [Eyal, 2015] in which competing miners purposely withhold full solutions to
damage the pool.

Property 6.3 (Budget Balanced). A reward function R is (γ, δ)-budget balanced
when for all b:

γ ≤
n∑

i=1

Ri(b) ≤ δ.

In particular, an (γ, 1)-budget balanced reward function will never pay more to
the miners than the pool operator received. Our goal will be (1, 1)-budget balanced
reward functions which share the reward exactly among the n miners.

6.2.4 Common examples

Perhaps the most obvious reward function is the proportional reward function: Ri(b) =
bi/K, where K = ||b||1 =

∑n
i=1 bi. That is, the reward is shared proportional to the

number of shares each miner reported. We show that the proportional rule is not
incentive compatible in Section 6.4.1.

Another reward function is the pay-per-share reward function: Ri(b, s) = bi/D,
where participants are rewarded a fixed amount per share. In Section 6.4.2 we show
that while this method is incentive compatible, it is not budget balanced (defined in
Section 6.2.3), which means that the pool operator may be liable to pay out more to
miners than she collects from the Bitcoin protocol.

6.2.5 Ensuring Steady Rewards

Miners are interested in maximizing the total reward they receive per time unit, but
they join pools primarily to achieve a more consistent stream of revenue. Our goal
will be to build a reward function which is as consistent as possible which satisfies the
three properties above. It is tempting to isolate one metric, such as the variance or
standard deviation of the distribution of rewards, but we will discuss in Section 6.7
why these metrics are probably not the best measures of consistency in practice and
provide different simulation results to compare reward functions.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 128

6.3 Incentive Compatibility

We stated that for a reward function R to be incentive compatible, it needs to incen-
tivize miners to report full solutions immediately. In this section we express that as
a condition that can easily be checked for any given reward function.

We do this by looking at the strategic choice that a miner faces when she finds a
full solution. Either she reports the full solution immediately, or she decides to delay
reporting the solution until d more shares have been found. In this section we do not
take into account the possibility of another miner finding and reporting a solution
during this delay. In Appendix 6.B we show that this is virtually without loss of
generality.

Consider the situation when at time t, miner i finds a full solution. At this point
bt shares have been reported to the pool operator (for notational simplicity we assume
that the full solution is already included in bt). The action space of miner i is d ∈ N
(including 0) where the miner waits for d additional shares to be reported before
reporting the full solution. If miner i decides to wait for d shares before reporting,
her expected reward at the end of the delay is:

E(b s.t. ||b||1=d)[Ri(bt + b)] =
∑

b s.t. ||b||1=d

Pr(seeing b) ·Ri(bt + b)

On the other hand, if she decides to report the full solution immediately, she will
receive the reward she was entitled to at that moment and a new round will start. So
she will additionally get d times the expected reward per share. That is, delaying her
report imposes an opportunity cost by not beginning the next round. So her expected
reward in this situation after d more shares is:

Ri(bt) + d · Eb [Ri(b)]

Eb[||b||1]
= Ri(b) + d · Eb [Ri(b)]

∑∞
k=1 k

(
1− 1

D

)k−1 1
D

= Ri(bt) +
d

D
· Eb [Ri(b)]

Reporting the solution immediately will be more profitable than delaying for d
shares if and only if:

∑

b s.t. ||b||1=d

Pr(seeing b) · (Ri(bt + b)−Ri(bt)) ≤
d

D
· Eb [Ri(b)] (6.2)

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 129

The miner’s best strategy is to report immediately if this condition holds for all
d ∈ N\{0}. The following lemma states that there exists a d ∈ N\{0} for which this
condition holds if and only if it holds for d = 1. This is a very powerful statement:
to determine the incentive compatibility of a reward function, we only need to see if
it is profitable to delay reporting for a single additional share. In the following, let
ej be the jth standard basis vector that is 0 everywhere except for the jth component
which is 1. The proof appears in Appendix 6.A.

Lemma 6.4. For a reward function R, a player i has an incentive to report full
solutions immediately, iff the following condition holds for all {αi}ni=1,bt, D, i:

n∑

j=1

αj · (Ri(bt + ej)−Ri(bt)) ≤
Eb [Ri(b)]

D
(6.3)

So to show that a reward function is incentive compatible, we need to show that
condition (6.3) holds, and conversely when we show that for a reward function con-
dition (6.3) is not guaranteed to hold, it cannot be incentive compatible.9

While for incentive compatibility we do not care about miners reporting shares
immediately, this is important in ensuring proportional payments.

Lemma 6.5. Miners report shares immediately if and only if the reward function R
is monotonically increasing each component. That is: for all i, and b:

Ri(b + ei) > Ri(b).

Proof. Since the order or timing of shares does not matter, for analysis purposes
we can assume the following scheme: as soon as a full solution is reported the pool
operator asks all miners for the shares that they found. If the reward function R is
monotonically increasing then each additional share that i reports increases her share,
hence she will report all shares. Conversely, if R is not monotonically increasing at
some b, then if miner i has bi + 1 shares, and all other miners have reported shares
according to b, then she will not report her last share.

Now consider the original problem: when a miner finds a share, will she report it
immediately? If she finds a share and the reward function is monotonically increasing,
then reporting it immediately can only increase her reward, whereas delaying it may
mean that someone else reports the full solution before she reports her share, in which
case she loses the opportunity to report. Thus she will report immediately.

9In Appendix 6.B we show that the possibility of another miner reporting a solution does not
materially change the characterization here and in Appendix 6.C we extend this to include the
possibility of another pool reporting a full solution.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 130

6.4 Incentive Compatibility of Existing Methods

Now we will apply our characterization of incentive compatibility to reward functions
which are in use today. In this section we restrict ourselves to reward functions that
can be modeled by our definition of history transcript as described in Section 6.2.

6.4.1 Proportional Reward Function R(prop)

One of the earliest reward functions that is still in use is the proportional reward
function. The idea is to divide the reward according to the proportion of shares of a
miner compared to all shares that were reported to the pool:

R
(prop)
i (b) =

bi
||b||1

.

In expectation, the reward per share for each player is αi/D. This approach is clearly
proportional and budget-balanced. Previous work [Rosenfeld, 2011] has shown that
in the presence of multiple pools, miners can be incentivized to change pools after a
certain number of shares has been found. In this section we present a new problem
that exists even in the absence of other mining pools and means that the proportional
reward function is not incentive compatible. The proof appears in Appendix 6.A

Lemma 6.6. The proportional rule R
(prop)
i (b) = bi

||b||1 is not incentive compatible.

This result shows that the proportional reward function is not incentive compatible
for a fundamental reason distinct from previous criticism. Even in the absence of
other pools, it does not always compel miners to report solutions immediately. The
intuition behind Lemma 6.6 is that if a player discovers a full solution early but has
been unlucky and reported a lower number of shares than they would expect based
on their mining power, it is in their incentive to delay reporting their solution since
on expectation their fraction of all reported shares will go up. We can draw a number
of corollaries immediately from Lemma 6.6:

• If the current ratio of blocks exceeds the expected ratio, then a player i would
report any full solution immediately.

• If the current ratio of blocks is lower than a player’s expected ratio, then she
might hold off to make up for this discrepancy.

• With fewer shares found, it’s easier for a player to catch up, hence she is more
willing to hold off reporting.

• After D shares have been found, any player will always report a full solution
immediately, even if she has not found a single share herself.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 131

6.4.2 Pay-Per-Share Reward Function R(pps)

The pay-per-share reward function pays a fixed amount for every share that is re-
ported. Recall that each share is a full solution with probability 1/D, in expectation
the pool operator sees D shares for every full solution. Therefore the payout per share
is 1/D leading to the following reward function:

R(pps)(b) =
bi
D
.

It’s easy to see that pay-per-share is incentive compatible.

Lemma 6.7. The pay-per-share rule R
(pps)
i (b) = bi

D
is incentive compatible.

Proof. The left hand side of (6.3) evaluates to

n∑

j=1

αj ·
(
R

(pps)
i (bt + ej)−R(pps)

i (bt)
)

= αi ·
(
bi + 1− bi

D

)
+ (1− αi) ·

(
bi − bi
D

)

=
αi
D

and the right hand side evaluates to

Eb

[
R

(pps)
i (b)

]

D
=
αi
D
.

This result comes at no surprise: with pay-per-share there is no benefit to delay
reporting a full solution as you receive a constant payment for every reported share
(or full solution). As discussed before though, it is not budget balanced.

Proposition 6.8. The pay-per-share rule R
(pps)
i (b) = bi

D
is no better than (1/D,∞)-

budget balanced.

Proof. On one extreme, if a full solution is reported before any other shares have been
reported, then R(pps) pays out

∑n
i=1R

(pps)
i (b) = 1/D. On the other extreme there is

no bound on how many shares can be found before a full solution must be obtained.
Hence R(pps) cannot be (1/D,C)-budget balanced for any finite C. Therefore it is
(1/D,∞)-budget balanced.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 132

In the absence of sabotage attacks, with the pay-per-share rule the pool oper-
ator pays out no more than it takes in expectation, but keeping the probability of
bankruptcy low requires large reserves for the pool operator [Rosenfeld, 2011]. There
are several variations that ameliorate the budget balance problem [Rosenfeld, 2011,
Sec 4], none of them quite satisfactorily.

6.5 A New IC Reward Function

In the last section we saw that two common existing methods which are possible in
our model both lack one of the desiderata for reward functions. The proportional
reward function may incentivize miners to delay reporting of solutions, whereas the
pay-per-share function may make the pool operator liable for more than she receives
from the protocol. In this section we demonstrate a reward function that satisfies
all three desiderata of reward functions, while still guaranteeing a steady stream of
rewards for all participants.

To satisfy the proportional payments property, it is necessary to estimate the
proportion of work that each miner has done. The only information the pool operator
receives within our informational model is the total number of shares per miner in the
round. When only a few shares have been found in the round, every additional share
may change this estimation quite significantly. When satisfying the budget-balanced
property, this must translate into a large change in the payout. When there is the
possibility of a large payout for an extra share, this may lead to incentive compatibility
issues. Note that in practice pay-per-share reward schemes usually avoid this problem
by lowering the payment amount in these cases. So to give a scheme that meets all
three desiderata, we need to take an additional estimator for αi into account. In the
next subsection we show that we can use the identity of the discoverer of the full
solution as this estimator.

6.5.1 The IC Reward Function

We propose the reward function R
(ic)
i : Nn × {1, ..., n} → [0, 1], that in addition to a

count of the shares per miner also includes the identity of the discoverer of the full
solution. In the following let 1{c} be the indicator function that is 1 if c is true, and
0 otherwise.

R
(ic)
i (b, s) =

bi
max{||b||1, D}

+ 1{i = s} ·
(

1− ||b||1
max{||b||1, D}

)

There are two cases to consider for the reward function. The easiest is when the

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 133

total number of reported shares ||b||1 ≥ D. In that case
(

1− ||b||1
max{||b||1,D}

)
= 0, hence

the reward function is identical to the proportional function. When ||b||1 < D each
share receives a fixed reward of 1/D, like in the pay-per-share function. However,
this would leave some money on the table as the total payout would be ||b||1/D and
||b||1 < D. So the remainder of the reward is given to the discoverer of the full
solution.

Lemma 6.9. The reward function R(ic) provides proportional payments.

Proof. We first split the expression into the two relevant cases.

Eb

[
R

(ic)
i (b, s)

]
= Pr(||b||1 < D) · Eb

[
R

(ic)
i (b, s) | ||b||1 < D

]

+ Pr(||b||1 ≥ D) · Eb

[
R

(ic)
i (b, s) | ||b||1 ≥ D

]
.

We now show that in both cases the expected reward for miner i is αi. When ||b||1 ≥
D the IC rule is no different than the proportional rule, hence

Eb

[
R

(ic)
i (b, s) | ||b||1 ≥ D

]
= αi.

Now for the case where ||b||1 < D:

Eb

[
R

(ic)
i (b, s) | ||b||1 < D

]

=
D−1∑

k=1

Pr(||b||1 = k|||b||1 < D) ·
(
E[bi|||b||1 = k]

D
+ Pr(i = s) ·

(
1− k

D

))

=
D−1∑

k=1

Pr(||b||1 = k|||b||1 < D) ·
(
αi · k
D

+ αi ·
(

1− k

D

))

=
D−1∑

k=1

Pr(||b||1 = k|||b||1 < D) · αi

= αi

Here we used the fact that when a full solution is found, the probability that it was
discovered by miner j is exactly its power αj.

Theorem 6.10. The reward function R(ic) is incentive compatible.

Proof. By Lemma 6.9, the right-hand side of condition (6.3) is αi/D. Now for the
left-hand side; if ||b||1 ≥ D the rule is identical to R(prop), so the left-hand side is at

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 134

most αi/D, hence condition (6.3) holds in this case. So the only case left to prove is
when ||b||1 < D.

n∑

j=1

αj ·
(
R

(ic)
i (bt + ej, i)−R(ic)

i (bt, i)
)

= αi ·
(
bi + 1− bi

D

)
+ (1− αi) ·

(
bi − bi
D

)
+

(
1− ||b||1 + 1

D

)
−
(

1− ||b||1
D

)

=
αi
D
−
(||b||1 + 1

D
− ||b||1

D

)

=
αi − 1

D
≤ 0

So when ||b||1 < D the miner is expected to lose utility by delaying, and certainly
condition (6.3) holds. So in all cases condition (6.3) holds, hence by Lemma 6.4 R(ic)

is incentive compatible.

So R(ic) satisfies proportional payments and incentive compatibility. Finally, it is
also a (1, 1)-budget balance reward function.

Proposition 6.11. R(ic) is a (1, 1)-budget balanced reward function.

Proof. When ||b||1 < D the total payout is
∑

i=1
bi
D

+
∑

i=1
bi
D

+ D−||b||1
D

= ||b||1
D

+
D−||b||1

D
= 1. When ||b||1 ≥ D the total payout is

∑
i=1

bi
||b||1 = ||b||1

||b||1 = 1.

6.5.2 Providing a Steady Payment Stream

While R(ic) satisfies all three desiderata for reward functions, it might be a concern
that the reward function pays out a potentially large fraction of the reward to a single
miner. Miners join a pool because they prefer a steady stream of small payments over
periodic large payments. We show here that the majority of the reward is paid out
for shares and not full solutions, and hence that the majority of the pool’s rewards
are redistributed in a steady stream. This ameliorates a large part of the problem
of mining alone, while guaranteeing incentive compatibility. In the Section 6.7 we
give simulation results suggesting that this payment stream is sufficiently steady in
practice.

Lemma 6.12. In expectation, a fraction 1−e−1 ≈ 0.63 of the rewards are given based
on shares under R(ic).

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 135

Proof. The fraction of the reward given to the discoverer of the full solution is

D−1∑

k=1

Pr(||b||1 = k) ·
(

1− k

D

)
=

D−1∑

k=1

1

D
·
(

1− 1

D

)k−1
·
(

1− k

D

)

=

(
1− 1

D

)D

≤ e−1

The remainder of the reward is split among the reported shares, hence the payout
to shares in expectation is 1− e−1 ≈ 0.63.

6.6 Incentive Compatibility of PPLNS

In previous sections we have given an overview of incentive compatibility for any
reward function based on access to a history transcript H consisting of a count of
all reported shares. By deriving incentive compatibility at this high level of abstrac-
tion allowed us to easily prove incentive compatibility for any function within this
informational model.

In this section we look at incentive compatibility of a particular reward func-
tion that require a more general informational model: the Pay-Per-Last-N -Shares
(PPLNS) reward function, that is widely used in practice. We first discuss the re-
quired changes in the informational model, and how the PPLNS function works, and
then we show that the function is incentive compatible.

6.6.1 The PPLNS Reward Function

The PPLNS reward function R(pplns) differs from the reward functions seen so far
in two important ways. Firstly, it maintains a history of reported shares that spans
multiple rounds. So what happens in round T is no longer isolated from what happens
in round T + 1. Secondly, the method takes the order of reported shares into account
in a specific way: it maintains a sliding window of length N and divides the reward
proportionally over these N shares. So the history transcript H that R(pplns) uses is
s = [st−N , st+1−N , ..., st] (an ordered list of N elements) and the reward function is:

R(pplns)(s) =
#{sj : sj ∈ s ∧ sj = i}

N

Since the order of reports matter, we say that shares fall into slots. Each slot
states if the report contains either a full solution or a share, and who the miner was
that reported it.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 136

6.6.2 Incentive Compatibility of PPLNS

We do not have a general condition under which reward functions in this informational
model are incentive compatible, so we argue incentive compatibility directly. In this
section we consider both reporting of shares as well as full solutions. For each, we
consider a binary strategy space: either report the share/solution immediately, or
delay reporting until one more share is found.10

Lemma 6.13. For the reward function R(pplns); a miner i reports shares immediately
when her mining power αi < 1− D

N
.

Proof. We directly calculate the expected revenue for delay versus reporting. When
the miner decides to delay reporting a share until one more share/solution is found,
she aims to move the sliding window of slots for which the share is eligible to receive
reward one further into the future. This means that –as long as no other miner finds
a full solution and reports it– the share is active for N − 1 of the same slots, so
any reward she receives from full solutions in those slots she will get regardless of her
choice to report immediately versus delaying. On the upshot, it could be the case that
the one additional slot she’s eligible for in the future yields a full solution. This will
happen with probability 1/D (since a share constitutes a full solution with probability
1/D) and in that case the share gets an extra payout of 1/N for the delayed share,
yielding an expected benefit for delaying of 1/ND.

However, there is also a risk associated with delaying. With probability 1− αi a
share will be found by a different miner, and with probability 1/D it will constitute a
full solution. When this happens, miner i will no longer be able to report the share as
it was discovered for a previous round. The expected value per share is 1/D (as it’s
active for N rounds, in which in expectation N/D full solutions will be reported for
a value of 1/N each) hence the expected harm for delaying the report is (1− αi) 1

D2 .
So the miner will report the share immediately iff 1

ND
< (1 − αi) · 1

D2 . Plugging
in αi <

D
N

leads to (1 − αi) · 1
D2 ≥ D

N
· 1
D2 = 1

ND
so the condition holds, and miners

report shares immediately.

In the previous section there were potential benefits, and harms to delaying the
report of a share, but there was no opportunity cost. Since miner i did not have a full
solution, her delay did not cause unnecessary work for all miners in the pool. For full
solutions we have to take the opportunity cost of letting all miners work on a block
for which a full solution is already found into account. This will guarantee incentive
compatibility whenever N > D.

Lemma 6.14. For the reward function R(pplns); a miner i reports full solutions im-
mediately when N ≥ D.

10This makes our results slightly less general in this setting than for the reduced information
setting, where the miner could delay for any delay d.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 137

Proof. In delaying a full solution, the hope is to get another share to report before
the miner reports the full solution. This happens with probability α1 · D−1D

(we need
the share to not be a full solution) and the additional value to this share would be
1
N

compared to it being reported after the full solution. However, while waiting for a
share, with probability 1

D
the next share will be a full solution, either found by miner

i, or one of the other miners. Regardless of who finds the solution, the previous full
solution that miner i was sitting on has become worthless: either a different miner
reported the full solution ending the round and thus making the delayed full solution
worthless, or miner i now has 2 full solutions of which she can report only one. When
this happens, she loses the solution whose expected value is 1/D (as this is counted
as a share for future). So the expected upshot for delaying the solution is α1

D−1
D

1
N

and the expected harm is 1
D2 .

In addition to this, when the miner chooses to delay until one more share is
found, she lets all miners in the pool work on a block for which she already has a
solution. If everyone were to spend that effort on a new block, that work would in
expectation constitute 1/D of the work for a new block, of which in expectation miner
i would receive αi of the reward. Thus, the opportunity cost is αi

D
. Therefore, a miner

will report a full solution immediately iff αi
D−1
D

1
N
− 1

D2 ≤ αi

D
which holds whenever

N ≥ D.

6.7 Simulations

The typical way to compare different reward function is to look at the variance of
payout for a single share [Rosenfeld, 2011], with a lower variance considered better.
However, looking at the variance alone may lead to some undesirable conclusions.
Consider the following two examples.

Example 6.15 (Solo Mining). When solo mining, the reward of a share is 1 if

it constitutes a full solution, and 0 otherwise. The variance is Eb[R
(solo)
i (b)2] −

Eb[R
(solo)
i (b)]2 = 1

D
− 1

D2 = D−1
D2 ≈ 1

D
. This value decreases with D. However, a

solo miner is completely indifferent as to how many shares are typically found before
a full solution is discovered. She only cares about the full solutions.

Example 6.16 (Pay-per-Share). Consider the pay-per-share reward function, where
the miner receives 1/D per share she reports. The variance of pay-per-share is 0,
since the miner always receives precisely the same amount whenever she reports a
share. However, when D gets smaller, the time between payouts increases, and in the
extreme case of D = 1, the scheme is identical to solo mining, while the variance is
still 0.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 138

In these two example we’ve seen a reward rule whose utility should not change
with the parameter D, but does, and one that should change with the parameter
D, but doesn’t. The variance of payments for a share addresses the uncertainty in
payouts, but it falls short in describing the utility that miners get out of the reward.
What a miner is interested in when joining is pool, is that with high probability, it
wants a guarantee on some minimal payout.11

(a) 99th percentile time to earn rewards (b) CDF of time to earn B 0.1

Figure 6.1: Simulation results for our new incentive-compatible reward function.

In Figure 6.1a we plot the time it takes for a miner to gain a given number of
bitcoins with 99% certainty. We run a simulation for a miner i with αi = 0.001,
D = 1, 000, 000. A unit of time corresponds to the expected time it takes for all
miners combined to find a full solution (in reality this is about 10 minutes) and we
normalize the reward for finding a full solution to be B 1 (in reality this currently
about B 25, although it changes over time). The lines indicate for each of three
reward functions how long one has to wait to gain a given amount of B with 99%
probability. First of all, observe that for solo mining the time is about 4500 rounds
and it does not increase with time. This is because whether a miner wants to obtain
B 0.001, or B 0.9, they have to find a full solution to reach this target. So the blue line
really indicates the time it takes to find a full solution. Even though in expectation
this takes 1000 rounds (for αi = 0.001), in 1% of cases a miner has to wait in excess
of 4500 rounds.

It can be seen that the incentive compatible scheme requires somewhat longer to
reach the same target than the proportional scheme. This is because not all reward is
shared according to the reported shares, but is partly distributed over the discoverers

11Note that since the process of finding shares is a random process, she could never get an uncon-
ditional guarantee.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 139

Figure 6.2: Comparison of the new incentive compatible scheme to PPLNS.

of full solutions. However, no matter what the target is, the difference in time required
differs no more than a small multiplicative factor. Finally, note that since it takes
longer to reach targets with high probability, the expected payouts between all three
functions is the same.

In Figure 6.1b we plot the CDF of the time needed to earn B 0.1. With overwhelm-
ing probability R(prop) pays out at least B 0.1 within 150 rounds, and R(ic) pays out at
least B 0.1 within 200 rounds. Solo mining does not fit on this scale and it wouldn’t
be until around round 7,000 before a miner makes at least B 0.1 with overwhelming
probability.

We compare the new incentive compatible scheme to the PPLNS scheme in Fig-
ure 6.2. Here we can see that the new incentive compatible scheme performs worse
by a small multiplicative factor, the PPLNS scheme performs worse by a small addi-
tive factor. This means that for small Bitcoin targets it would be faster to use the
IC reward function, whereas for larger target the PPLNS reward function performs
better.

From these simulations we can conclude that the trade-off for using the incentive
compatible or PPLNS reward function compared to the proportional reward function
is a modest delay in the time it would take miners to reach a minimal amount of
bitcoin with high probability. In return we get a scheme in which it is obvious for
miners what the most profitable strategy for them is.

6.8 Conclusions & Open Problems

We set out with a simple question: as a mining pool operator, in the absence of other
mining pools or outside options, which reward functions will incentivize miners to

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 140

report full solutions immediately? In this simple model it would be reasonable to
assume that miners always have an incentive to report immediately. However, we
show that for proportional rewards, there are situations in which miners prefer to
hold on to a full solution temporarily in order to improve their payout, harming the
entire pool in the process. We also defined a novel reward function that is incentive
compatible in this model (and remains so even in more powerful models). While this
new scheme is not quite as efficient as proportional rewards in terms of smoothing
the miners’ revenue streams, it comes reasonably close in practice. We have also
showed that the PPLNS reward function is incentive compatible. For a pool operator
there are some tradeoffs in deciding to use our new incentive compatible scheme
versus the PPLNS scheme. The latter requires a certain lead-up time, where the
rewards to miners are below their fraction of the mining power. It also requires pool
operators to maintain a more complex state and the payouts are arguably somewhat
less transparent. On the other hand, our new incentive compatible method sometimes
pays out a rather large amount to the discoverer of the full solution.

We have given a first informational model for which we can characterize incentive
compatibility for all reward functions that fall in the model. We’ve also looked at a
particular reward function that falls outside this model, and proved incentive compat-
ibility from first principles. The next enticing question is to see if we can characterize
incentive compatibility in this larger informational model at a high level, so that
we can quickly identify which other reward functions would be incentive compatible.
There are many reward functions in use today [Rosenfeld, 2011] that are not covered
by any of our results. For example, the Geometric Method weights shares differently
according to the order of shares in a round and Slush’s Method takes the time of
reported shares in a round into account. Defining a common informational model,
characterizing incentive compatibility in this model, and classifying these methods
remains an interesting open problem.

We stress that our incentive-compatible reward function will remain so even in a
model with more extensive history transcripts. Our goal was to introduce the first
rigorous, although simplified by omitting notions of time or order of share reporting,
model of Bitcoin mining pools and demonstrate that even this simple model can lead
to non-intuitive results.

Chapter Appendix

6.A Omitted Proofs

6.A.1 Proof of Lemma 6.4

For a reward function R, a player i has an incentive to report full solutions immedi-
ately, iff the following condition holds for all {αi}ni=1,bt, D, i:

n∑

j=1

αj · (Ri(bt + ej)−Ri(bt)) ≤
Eb [Ri(b)]

D
(6.4)

Proof. (⇒) This direction is straightforward: when it is beneficial to delay until 1
more share is reported, then there exists a profitable delay (namely d = 1).

(⇐) We need to prove that for all d, the following inequality holds:

∑

b s.t. ||b||1=d

Pr(seeing b) · (Ri(bt + b)−Ri(bt)) ≤
d

D
Eb [Ri(b)] .

We prove this by induction on d, where the induction hypothesis is equation (6.2). For
the base case d = 1 the statement follows directly from condition (6.3). So consider
the case d > 1:

141

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 142

∑

b s.t. ||b||1=d

Pr(seeing b) · (Ri(bt + b)−Ri(bt))

=
∑

ej

Pr(seeing ej)

Ri(bt + ej)−Ri(bt)

+
∑

b s.t. ||b||1=d−1

Pr(seeing b) · (Ri(bt + ej + b)−Ri(bt + ej))

≤ 1

D
Eb [Ri(b)]

+
∑

ej

Pr(seeing ej)
∑

b s.t. ||b||1=d−1

Pr(seeing b) · (Ri(bt + ej + b)−Ri(bt + ej))

≤ 1

D
Eb [Ri(b)] +

∑

ej

Pr(seeing ej)
d− 1

D
Eb [Ri(b)]

=
d

D
Eb [Ri(b)]

where the first inequality follows from condition (6.3), and the second from the in-
duction hypothesis.

6.A.2 Proof of Lemma 6.6

The proportional rule R
(prop)
i (b) = bi

||b||1 is not incentive compatible.

Proof. Instantiate (6.3) for the proportional rule. For the right hand side we have:

Eb

[
R

(prop)
i (b, s)

]
/D =

1

D

∞∑

k=1

Pr[full solution is found at kth block]
E[bi|k]

k

=
1

D

∞∑

k=1

(
1− 1

D

)k−1
1

D

k · αi
k

=
αi
D

∞∑

k=1

(
1− 1

D

)k−1
1

D

=
αi
D

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 143

Now for the left hand side. In the following let k = ||bt||1:
n∑

j=1

αj ·
(
R

(prop)
i (bt + ej)−R(prop)

i (bt)
)

= αi ·
(
bi + 1

k + 1

)
+ (1− αi) ·

(
bi

k + 1

)
− bi
k

=
αibi + αi + bi − αibi

k + 1
− bi
k

=
αi + bi
k + 1

− bi
k

=
αi

k + 1
+ bi

(
1

k + 1
− 1

k

)

=
αi

k + 1
− bi
k(k + 1)

=
αi − bi

k

k + 1

Recall that for an incentive compatible scheme we need:

αi − bi
k

k + 1
≤ αi
D

αi −
bi
k
≤ αi

k + 1

D
bi
k
≥ αi

(
1− k + 1

D

)
.

This condition is not guaranteed to be satisfied. In particular, for every αi > 0 there
exist positive values bi, k,D such that the condition is violated.

6.B Incentive Compatibility with Preemptions

In Section 6.3 we showed that there is a simple condition that precisely characterizes
when a reward function R is incentive compatible, under the assumption that no
other miner finds and reports a full solution during this delay. In reality a miner does
have to take this possibility into account, so in this section we show exactly how the
IC condition changes when we drop this assumption.

If we decide to delay reporting the full solution until one additional share is found,
then with probability 1/D that share will actually be a full solution itself. Without
loss of generality we may assume that this solution will be reported immediately

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 144

(otherwise we could simply ignore its effect). Recall that bt is the number of reported
shares per miner including the unreported full solution that miner i has, and that ej
is the vector that has zeros everywhere except its jth component, where it is 1. So
the expected payout for delaying for one round becomes:

1

D

∑

j

αjRi(bt − ei + ej) +
D − 1

D

∑

j

αjRi(bt + ej)

Thus the condition of incentive compatibility is:

1

D

∑

j

αj (Ri(bt − ei + ej)−Ri(bt))

+
D − 1

D

∑

j

αj (Ri(bt + ej)−Ri(bt)) ≤ Eb[Ri(b)]

D

For the reward functions that are monotonic increasing in each component (which
by Lemma 6.5 are precisely the reward functions where miners always report all
shares) this additional term is negative. Therefore, the IC condition is only easier to
satisfy. This means that reward functions that are proven to be incentive compatible
using Lemma 6.4 are still incentive compatible. However, one might worry that our
proof that the proportional reward function is not incentive compatible might break.
We show next that the threat of being scooped actually does not impact the result
qualitatively.

6.B.1 Proportional

For the proportional reward function we can instantiate the left-hand side as (taking
||bt||1 = k):

1

D

(
αi

(
bi
k
− bi
k

)
+ (1− αi)

(
bi − 1

k
− bi
k

))

+
D − 1

D

(
αi

(
bi + 1

k + 1
− bi
k

)
+ (1− αi)

(
bi

k + 1
− bi
k

))

=
1

D

1− αi
k

+
D − 1

D

αi − bi
k

k + 1

So the proportional reward function is IC if and only if

1

D

1− αi
k

+
D − 1

D

αi − bi
k

k + 1
≤ αi
D
.

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 145

Again this is not guaranteed to be satisfied.So including the possibility of another
miner finding a full solution does not qualitatively change the incentive compatibility
results, although quantitatively there may be situations where a miner would choose
to delay if she does not fear being scooped, but choose to report if she does include
this possibility.

6.C Multiple Pools

In the main text we’ve assumed that there are no other pools that compete for finding
solutions to the cryptographic puzzle. This is reasonable from the perspective of prov-
ing positive results: any incentive compatible scheme should be incentive compatible
regardless of how much mining power other pools have.

However, to convincingly reject the proportional rule as not incentive compatible,
we should take the effect of other pools into account. In the following let

∑n
i=1 αi =

αP < 1 be the total mining power of the pool, so all other mining power —of both
other pools and solo miners— is 1−αP . For notational simplicity we do not consider
being scooped by a different miner in our own pool; it’s obvious how this can be
included by comparing the results to the one in Appendix 6.B. When we consider to
delay reporting a full solution until one more share is found —either inside or outside
the pool— then our expected utility for doing so is

∑

j

αjRi(bt + ej) + (1− αP)

(
1

D
· 0 +

D − 1

D
Ri(bt)

)
.

We don’t really care if some other pool finds another share. This does not affect us.
But if another pool finds a full solution and reports it, then our mining pool misses
out on a complete payment that it could have received. So the condition for incentive
compatibility becomes

n∑

j=1

αj · (Ri(bt + ej)−Ri(bt))− (1− αP)
Ri(b)

D
≤ αP

Eb [Ri(bt)]

D
.

Under the assumption that the pool in expectation will collect αP of the total
reward among pools, and that miner i collects αi

αP
of the pool she is in, the right-hand

side will remain αi

D
. The new term on the left-hand side is simply (1 − αP) bi

kD
. The

CHAPTER 6. INCENTIVES IN BITCOIN MINING POOLS 146

other term on the left-hand side changes slightly:

n∑

j=1

αj ·
(
R

(prop)
i (bt + ej)−R(prop)

i (bt)
)

= αi ·
(
bi + 1

k + 1

)
+ (αP − αi) ·

(
bi

k + 1

)
− bi
k

=
αibi + αi + αP bi − αibi

k + 1
− bi
k

=
αi + αP bi
k + 1

− bi
k
.

This cannot be simplified to the same convenient expression we had in Section 6.3.
Combining these terms the condition for incentive compatibility of the proportional
reward function becomes:

αi + αP bi
k + 1

− bi
k
− (1− αP)

bi
kD
≤ αi
D

and after rewriting this:

αi
k + 1

+ αP bi

(
1

kD
+

1

k + 1

)
− bi
k

(
1 +

1

D

)
≤ αi
D

Bibliography

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the Twenty-first International Conference on Ma-
chine Learning, ICML ’04, pages 1–, New York, NY, USA, 2004. ACM. ISBN
1-58113-838-5. doi: 10.1145/1015330.1015430. URL http://doi.acm.org/10.

1145/1015330.1015430.

Jacob Abernethy, Yiling Chen, and Jennifer Wortman Vaughan. Efficient market
making via convex optimization, and a connection to online learning. ACM Trans-
actions on Economics and Computation, 1(2):12, 2013.

S. N. Afriat. The construction of utility functions from expenditure data. Inter-
national Economic Review, 8(1):pp. 67–77, 1967. ISSN 00206598. URL http:

//www.jstor.org/stable/2525382.

Charu C. Aggarwal. Outlier Analysis. Springer New York, 2013.

Ravindra K. Ahuja and James B. Orlin. Inverse optimization. Operations Research,
49(5):771–783, 2001. doi: 10.1287/opre.49.5.771.10607.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191.
American Mathematical Soc., 2007.

E. Anshelevich, A. Dasgupta, J. Kleinberg, . Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. SIAM Journal
on Computing, 38(4):1602–1623, 2008. doi: 10.1137/070680096. URL http://dx.

doi.org/10.1137/070680096.

Pablo Daniel Azar, Constantinos Daskalakis, Silvio Micali, and S. Matthew Weinberg.
Optimal and efficient parametric auctions. In Proceedings of the Twenty-Fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013, pages 596–604, 2013.

Moshe Babaioff, Robert D. Kleinberg, and Aleksandrs Slivkins. Truthful mechanisms
with implicit payment computation. In Proceedings of the 11th ACM Conference

147

http://doi.acm.org/10.1145/1015330.1015430
http://doi.acm.org/10.1145/1015330.1015430
http://www.jstor.org/stable/2525382
http://www.jstor.org/stable/2525382
http://dx.doi.org/10.1137/070680096
http://dx.doi.org/10.1137/070680096

BIBLIOGRAPHY 148

on Electronic Commerce, EC ’10, pages 43–52, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-822-3. doi: 10.1145/1807342.1807349. URL http://doi.acm.

org/10.1145/1807342.1807349.

Moshe Babaioff, Liad Blumrosen, Shaddin Dughmi, and Yaron Singer. Posting prices
with unknown distributions. In Innovations in Computer Science (ICS). Tsinghua
University Press, January 2011.

Patrick Bajari, Han Hong, and Stephen P Ryan. Identification and estimation of a
discrete game of complete information. Econometrica, 78(5):1529–1568, 2010.

Maria-Florina Balcan, Avrim Blum, Jason D. Hartline, and Yishay Mansour. Reduc-
ing mechanism design to algorithm design via machine learning. J. Comput. Syst.
Sci., 74(8):1245–1270, 2008.

S. Baliga and R. Vohra. Market research and market design. Advances in Theoretical
Economics, 3, 2003. Article 5.

M. J. Bayarri and M. H. DeGroot. Optimal reporting of predictions. Journal of the
American Statistical Association, 84(405):214–222, 1989. doi: 10.1080/01621459.
1989.10478758.

Jon Louis Bentley. Multidimensional binary search trees used for associative search-
ing. Commun. ACM, 18(9):509–517, September 1975. ISSN 0001-0782.

J Eric Bickel and Seong Dae Kim. Verification of the weather channel probability of
precipitation forecasts. Monthly Weather Review, 136(12):4867–4881, 2008.

John P Bonin. On the design of managerial incentive structures in a decentralized
planning environment. The American Economic Review, 66(4):682–687, 1976.

Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll,
and Edward W. Felten. Research Perspectives and Challenges for Bitcoin and
Cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy, May 2015.
URL http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf.

Craig Boutilier. Eliciting forecasts from self-interested experts: scoring rules for de-
cision makers. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 737–744. International Foundation
for Autonomous Agents and Multiagent Systems, 2012.

Leo Breiman. Random forests. Machine Learning, pages 5–32, 2001.

Timothy F Bresnahan and Peter C Reiss. Empirical models of discrete games. Journal
of Econometrics, 48(1):57–81, 1991.

http://doi.acm.org/10.1145/1807342.1807349
http://doi.acm.org/10.1145/1807342.1807349
http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf

BIBLIOGRAPHY 149

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Optics-of:
Identifying local outliers. In PKDD, pages 262–270, 1999.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:
identifying density-based local outliers. In ACM sigmod record, volume 29, pages
93–104, 2000.

Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly
weather review, 78(1):1–3, 1950.

Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction
problems. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 547–555. ACM, 2011.

Kevin Buchin, Olivier Devillers, Wolfgang Mulzer, Okke Schrijvers, and Jonathan
Shewchuk. Vertex deletion for 3d delaunay triangulations. In European Symposium
on Algorithms, pages 253–264. Springer Berlin Heidelberg, 2013.

Andreas Buja, Werner Stuetzle, and Yi Shen. Loss functions for binary class proba-
bility estimation and classification: Structure and applications. 2005.

Yang Cai, Constantinos Daskalakis, and Christos H Papadimitriou. Optimum statis-
tical estimation with strategic data sources. In COLT, pages 280–296, 2015.

N. Cesa-Bianchi, C. Gentile, and Y. Mansour. Regret minimization for reserve prices
in second-price auctions. IEEE Transactions on Information Theory, 61(1):549–
564, 2015.

Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order
bounds for prediction with expert advice. Machine Learning, 66(2-3):321–352,
2007.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin.
Approximating a finite metric by a small number of tree metrics. Proceedings of
Foundations of Computer Science, pages 379–388, 1998.

Shuchi Chawla, Jason D. Hartline, and Denis Nekipelov. Mechanism design for data
science. CoRR, abs/1404.5971, 2014. URL http://arxiv.org/abs/1404.5971.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player Nash equilibria. Journal of the ACM (JACM), 56(3):14, 2009.

http://arxiv.org/abs/1404.5971

BIBLIOGRAPHY 150

Yiling Chen and David M Pennock. Designing markets for prediction. AI Magazine,
31(4):42–52, 2010.

Alessandro Chiesa, Silvio Micali, and Zeyuan Allen Zhu. Mechanism design with
approximate valuations. In Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012, pages 34–38, 2012.

Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck Wee, Marco Barreno, Christos H.
Papadimitriou, and John Kubiatowicz. Selfish caching in distributed systems: A
game-theoretic analysis. In Proceedings of the 23rd Annual ACM Symposium on
PODC, PODC ’04, pages 21–30, New York, NY, USA, 2004. ACM. ISBN 1-
58113-802-4. doi: 10.1145/1011767.1011771. URL http://doi.acm.org/10.1145/

1011767.1011771.

Richard Cole and Tim Roughgarden. The sample complexity of revenue maximiza-
tion. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pages 243–252. ACM, 2014.

Nicolas T Courtois and Lear Bahack. On subversive miner strategies and block with-
holding attack in bitcoin digital currency. arXiv preprint arXiv:1402.1718, 2014.

Jacques Crémer and Richard P. McLean. Optimal selling strategies under uncertainty
for a discriminating monopolist when demands are interdependent. Econometrica,
53(2):345–361, 1985.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The
complexity of computing a Nash equilibrium. In Proceedings of the Thirty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’06, pages 71–78, New
York, NY, USA, 2006. ACM. ISBN 1-59593-134-1. doi: 10.1145/1132516.1132527.
URL http://doi.acm.org/10.1145/1132516.1132527.

Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and Ke Yi. An
information-theoretic approach to detecting changes in multi-dimensional data
streams. In In Proc. Symp. on the Interface of Statistics, Computing Science,
and Applications. Citeseer, 2006.

Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression
learning. Journal of Computer and System Sciences, 76(8):759–777, 2010.

Nikhil R Devanur, Jason D Hartline, and Qiqi Yan. Envy freedom and prior-free
mechanism design. Journal of Economic Theory, 2014.

Nikhil R. Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample com-
plexity of auctions with side information. 2016. To appear in STOC ’16.

http://doi.acm.org/10.1145/1011767.1011771
http://doi.acm.org/10.1145/1011767.1011771
http://doi.acm.org/10.1145/1132516.1132527

BIBLIOGRAPHY 151

Peerapong Dhangwatnotai, Tim Roughgarden, and Qiqi Yan. Revenue maximization
with a single sample. In Proceedings of the 11th ACM Conference on Electronic
Commerce (EC), pages 129–138, 2010.

S. Dughmi, L. Han, and N. Nisan. Sampling and representation complexity of revenue
maximization. In Workshop on Internet and Network Economics (WINE), pages
277–291, 2014.

Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character
of the sample distribution function and of the classical multinomial estimator. The
Annals of Mathematical Statistics, pages 642–669, 1956.

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising
and the generalized second-price auction: Selling billions of dollars worth of key-
words. American Economic Review, 97(1):242–259, 2007. doi: 10.1257/aer.97.1.
242. URL http://www.aeaweb.org/articles.php?doi=10.1257/aer.97.1.242.

Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reser-
voir. Information Processing Letters, 97(5):181–185, 2006.

Edith Elkind. Designing and learning optimal finite support auctions. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 736–
745. SIAM, 2007.

Andrew F. Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen
Wong. Systematic construction of anomaly detection benchmarks from real data.
In ACM SIGKDD Workshop on Outlier Detection and Description, pages 16–21,
2013.

Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. A
geometric framework for unsupervised anomaly detection. In Daniel Barbará and
Sushil Jajodia, editors, Applications of Data Mining in Computer Security, pages
77–101, Boston, MA, 2002.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In KDD,
volume 96, pages 226–231, 1996.

Ittay Eyal. The Miner’s Dilemma. In IEEE Symposium on Security and Privacy,
2015.

Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In Financial Cryptography, 2014.

http://www.aeaweb.org/articles.php?doi=10.1257/aer.97.1.242

BIBLIOGRAPHY 152

R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9, 1974.

Dean P. Foster and Rakesh V. Vohra. Calibrated learning and correlated equilib-
rium. Games and Economic Behavior, 21(12):40 – 55, 1997. ISSN 0899-8256. doi:
http://dx.doi.org/10.1006/game.1997.0595. URL http://www.sciencedirect.

com/science/article/pii/S0899825697905959.

Dimitris Fotakis, Spyros Kontogiannis, Elias Koutsoupias, Marios Mavronicolas, and
Paul Spirakis. The structure and complexity of Nash equilibria for a selfish routing
game. In Automata, Languages and Programming, volume 2380 of Lecture Notes in
Computer Science, pages 123–134. Springer Berlin Heidelberg, 2002. ISBN 978-3-
540-43864-9. doi: 10.1007/3-540-45465-9 12. URL http://dx.doi.org/10.1007/

3-540-45465-9_12.

Peter Frazier, David Kempe, Jon Kleinberg, and Robert Kleinberg. Incentivizing
exploration. In Proceedings of the fifteenth ACM conference on Economics and
computation, pages 5–22. ACM, 2014.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

Hu Fu, Nima Haghpanah, Jason D. Hartline, and Robert Kleinberg. Optimal auctions
for correlated buyers with sampling. In EC, pages 23–36, 2014.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction,
and estimation. Journal of the American Statistical Association, 102(477):359–378,
2007.

Andrew V Goldberg and Jason D Hartline. Collusion-resistant mechanisms for single-
parameter agents. In Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 620–629. Society for Industrial and Applied Mathe-
matics, 2005.

Andrew V Goldberg, Jason D Hartline, Anna R Karlin, Michael Saks, and Andrew
Wright. Competitive auctions. Games and Economic Behavior, 55(2):242–269,
2006.

Yannai A Gonczarowski and Noam Nisan. Efficient empirical revenue maximization
in single-parameter auction environments. In Proceedings of the annual 49th ACM
symposium on Theory of computing, page to appear. ACM, 2017.

http://www.sciencedirect.com/science/article/pii/S0899825697905959
http://www.sciencedirect.com/science/article/pii/S0899825697905959
http://dx.doi.org/10.1007/3-540-45465-9_12
http://dx.doi.org/10.1007/3-540-45465-9_12

BIBLIOGRAPHY 153

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Trans. Knowl.
Data Eng., 15(3):515–528, 2003.

Sudipto Guha, Nina Mishra, Roy Gourav, and Okke Schrijvers. Robust random cut
forest based anomaly detection on streams. In Proceedings of The 33rd International
Conference on Machine Learning, pages 2712–2721, 2016.

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD, pages 47–57, 1984.

Bach Q Ha and Jason D Hartline. Mechanism design via consensus estimates, cross
checking, and profit extraction. ACM Transactions on Economics and Computa-
tion, 1(2):8, 2013.

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strate-
gic classification. In Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, pages 111–122. ACM, 2016.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to cor-
related equilibrium. Econometrica, 68(5):1127–1150, 2000. ISSN 1468-0262. doi:
10.1111/1468-0262.00153. URL http://dx.doi.org/10.1111/1468-0262.00153.

Jason Hartline. Mechanism design and approximation. Book draft (September 2014),
September 2014.

Jason D Hartline and Tim Roughgarden. Optimal mechanism design and money
burning. In Proceedings of the fortieth annual ACM symposium on Theory of com-
puting, pages 75–84. ACM, 2008.

Christian Franz Horn, Bjoern Sven Ivens, Michael Ohneberg, and Alexander Brem.
Prediction markets–a literature review 2014. The Journal of Prediction Markets, 8
(2):89–126, 2014.

Joseph T Howson Jr. Equilibria of polymatrix games. Management Science, 18
(5-part-1):312–318, 1972.

Hao Huang and Shiva Prasad Kasiviswanathan. Streaming anomaly detection using
randomized matrix sketching. Proceedings of the VLDB Endowment, 9(3):192–203,
2015.

Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the most of your
samples. Proceedings of EC’15, 2015.

http://dx.doi.org/10.1111/1468-0262.00153

BIBLIOGRAPHY 154

Kamal Jain and Mohammad Mahdian. Cost sharing. Algorithmic game theory, pages
385–410, 2007.

Benjamin Johnson, Aron Laszka, Jens Grossklags, Marie Vasek, and Tyler Moore.
Game-theoretic analysis of DDoS attacks against Bitcoin mining pools. In Work-
shop on Bitcoin Research, 2014.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings
into a hilbert space. Contemporary Mathematics 26. Providence, RI: American
Mathematical Society, 1984.

Victor Richmond R Jose, Robert F Nau, and Robert L Winkler. Scoring rules,
generalized entropy, and utility maximization. Operations research, 56(5):1146–
1157, 2008.

Sham M Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with
approximation algorithms. SIAM Journal on Computing, 39(3):1088–1106, 2009.

S. Kalyanaraman and C. Umans. The complexity of rationalizing network forma-
tion. In Foundations of Computer Science, 2009. FOCS ’09. 50th Annual IEEE
Symposium on, pages 485–494, Oct 2009. doi: 10.1109/FOCS.2009.48.

Shankar Kalyanaraman and Christopher Umans. The complexity of rationaliz-
ing matchings. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga,
editors, Algorithms and Computation, volume 5369 of Lecture Notes in Com-
puter Science, pages 171–182. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-
92181-3. doi: 10.1007/978-3-540-92182-0 18. URL http://dx.doi.org/10.1007/

978-3-540-92182-0_18.

Michael Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game
theory. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial
Intelligence, UAI’01, pages 253–260, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-800-1. URL http://dl.acm.org/citation.

cfm?id=2074022.2074054.

Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data
streams. In VLDB, pages 180–191, 2004.

Robert D. Kleinberg and Frank Thomson Leighton. The value of knowing a demand
curve: Bounds on regret for online posted-price auctions. In FOCS, pages 594–
605, New York, New York, USA., 2003. IEEE Computer Society. URL http:

//dblp.uni-trier.de/db/conf/focs/focs2003.html#KleinbergL03.

http://dx.doi.org/10.1007/978-3-540-92182-0_18
http://dx.doi.org/10.1007/978-3-540-92182-0_18
http://dl.acm.org/citation.cfm?id=2074022.2074054
http://dl.acm.org/citation.cfm?id=2074022.2074054
http://dblp.uni-trier.de/db/conf/focs/focs2003.html#KleinbergL03
http://dblp.uni-trier.de/db/conf/focs/focs2003.html#KleinbergL03

BIBLIOGRAPHY 155

Edwin M Knorr and Raymond T Ng. A unified notion of outliers: Properties and
computation. In KDD, pages 219–222, 1997.

Edwin M Knorr and Raymond T Ng. Algorithms for mining distancebased outliers
in large datasets. In VLDB, pages 392–403, 1998.

Edwin M Knorr and Raymond T Ng. Finding intensional knowledge of distance-based
outliers. In VLDB, volume 99, pages 211–222, 1999.

Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers:
algorithms and applications. VLDB Journal, 8(3-4):237–253, 2000.

Volodymyr Kuleshov and Okke Schrijvers. Inverse Game Theory: Learning Utilities
in Succinct Games, pages 413–427. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015. ISBN 978-3-662-48995-6.

Aron Laszka, Benjamin Johnson, and Jens Grossklags. When bitcoin mining pools
run dry. In International Conference on Financial Cryptography and Data Security,
pages 63–77. Springer, 2015.

Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection
algorithms-the numenta anomaly benchmark. arXiv:1510.03336, 2015.

Stephen T Lawless. Crying wolf: false alarms in a pediatric intensive care unit.
Critical care medicine, 22(6):981–985, 1994.

Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jeffrey S
Rosenschein. Bitcoin mining pools: A cooperative game theoretic analysis. In
Proceedings of the 2015 International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 919–927. International Foundation for Autonomous Agents
and Multiagent Systems, 2015.

T. Lindvall. Lectures on the coupling method. Wiley, New York, 1992.

Wietze Lise. Estimating a game theoretic model. Computational Economics, 18(2):
141–157, 2001.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Infor-
mation and computation, 108(2):212–261, 1994.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection.
ACM Trans. Knowl. Discov. Data, 6(1):3:1–3:39, March 2012.

Yang Liu and Yiling Chen. A bandit framework for strategic regression. In Advances
in Neural Information Processing Systems, pages 1813–1821, 2016.

BIBLIOGRAPHY 156

Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and Aquinas Hobor.
On power splitting games in distributed computation: The case of bitcoin pooled
mining. Technical report, Cryptology ePrint Archive, Report 2015/155, 2015,
http://eprint. iacr. org, 2015.

Mohammad Mahdian, Okke Schrijvers, and Sergei Vassilvitskii. Algorithmic cartog-
raphy: Placing points of interest and ads on maps. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 755–764. ACM, 2015.

Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, and Zhiwei Steven Wu.
Bayesian exploration: Incentivizing exploration in bayesian games. arXiv preprint
arXiv:1602.07570, 2016.

Pascal Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality.
The Annals of Probability, pages 1269–1283, 1990.

John McCarthy. Measures of the value of information. Proceedings of the National
Academy of Sciences of the United States of America, 42(9):654, 1956.

Andres Munoz Medina and Mehryar Mohri. Learning theory and algorithms for
revenue optimization in second price auctions with reserve. In Proceedings of The
31st Intl. Conf. on Machine Learning, pages 262–270, 2014.

Edgar C Merkle and Mark Steyvers. Choosing a strictly proper scoring rule. Decision
Analysis, 10(4):292–304, 2013.

Andrew Miller, Elaine Shi, Ahmed Kosba, and Jonathan Katz. Nonoutsourceable
Scratch-Off Puzzles to Discourage Bitcoin Mining Coalitions (preprint), 2014.

Nolan Miller, Paul Resnick, and Richard Zeckhauser. Eliciting informative feedback:
The peer-prediction method. Management Science, 51(9):1359–1373, 2005.

J. Morgenstern and T. Roughgarden. The psuedo-dimension of near-optimal auctions.
To appear in NIPS ’16, 2015.

Hervé Moulin. Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare, 16(2):279–320, 1999.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):
58–73, 1981.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted, 1
(2012):28, 2008.

BIBLIOGRAPHY 157

John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

Z. Neeman. The effectiveness of English auctions. Games and Economic Behavior,
43(2):214–238, 2003.

Denis Nekipelov, Vasilis Syrgkanis, and Eva Tardos. Econometrics for learning agents.
In Proceedings of the Sixteenth ACM Conference on Economics and Computation,
EC ’15, pages 1–18, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3410-
5. doi: 10.1145/2764468.2764522. URL http://doi.acm.org/10.1145/2764468.

2764522.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning.
In Proc. 17th International Conf. on Machine Learning, pages 663–670. Morgan
Kaufmann, 2000.

Noam Nisan. Introduction to mechanism design (for computer scientists). In Noam
Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani, editors, Algorithmic
Game Theory. Cambridge University Press, 2007.

Christos H. Papadimitriou and Tim Roughgarden. Computing correlated equilibria
in multi-player games. J. ACM, 55(3):14:1–14:29, August 2008. ISSN 0004-5411.
doi: 10.1145/1379759.1379762. URL http://doi.acm.org/10.1145/1379759.

1379762.

Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980, 2011.

RobertW. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2(1):65–67, 1973. ISSN 0020-7276. doi:
10.1007/BF01737559. URL http://dx.doi.org/10.1007/BF01737559.

Tim Roughgarden. Twenty Lectures on Algorithmic Game Theory. Cambridge Uni-
versity Press, 2016.

Tim Roughgarden and Okke Schrijvers. Network cost-sharing without anonymity.
ACM Transactions on Economics and Computation, 4(2):8, 2016a.

Tim Roughgarden and Okke Schrijvers. Ironing in the dark. In Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16, pages 1–18, New York,
NY, USA, 2016b. ACM. ISBN 978-1-4503-3936-0. doi: 10.1145/2940716.2940723.
URL http://doi.acm.org/10.1145/2940716.2940723.

Tim Roughgarden and Okke Schrijvers. Online prediction with selfish experts. arXiv
preprint arXiv:1702.03615, 2017.

http://doi.acm.org/10.1145/2764468.2764522
http://doi.acm.org/10.1145/2764468.2764522
http://doi.acm.org/10.1145/1379759.1379762
http://doi.acm.org/10.1145/1379759.1379762
http://dx.doi.org/10.1007/BF01737559
http://doi.acm.org/10.1145/2940716.2940723

BIBLIOGRAPHY 158

Tim Roughgarden and Eva Tardos. Introduction to the inefficiency of equilibria.
Algorithmic Game Theory, 17:443–459, 2007.

Paul A. Samuelson. Consumption theory in terms of revealed preference. Economica,
15(60):pp. 243–253, 1948. ISSN 00130427. URL http://www.jstor.org/stable/

2549561.

Leonard J Savage. Elicitation of personal probabilities and expectations. Journal of
the American Statistical Association, 66(336):783–801, 1971.

Mark J Schervish. A general method for comparing probability assessors. The Annals
of Statistics, pages 1856–1879, 1989.

Okke Schrijvers and Jarke J van Wijk. Visual explanation of the complexity in julia
sets. In Computer Graphics Forum, volume 32, pages 431–440. Blackwell Publishing
Ltd, 2013.

Okke Schrijvers, Frits van Bommel, and Kevin Buchin. Delaunay triangulations on the
word ram: Towards a practical worst-case optimal algorithm. In Voronoi Diagrams
in Science and Engineering (ISVD), 2013 10th International Symposium on, pages
7–15. IEEE, 2013.

Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive
compatibility of bitcoin mining pool reward functions. In Financial Cryptography
and Data Security, 2016.

I. Segal. Optimal pricing mechanisms with unknown demand. American Economic
Review, 93(3):509–529, 2003.

Nihar Bhadresh Shah and Denny Zhou. Double or nothing: Multiplicative incen-
tive mechanisms for crowdsourcing. In Advances in neural information processing
systems, pages 1–9, 2015.

Balasubramanian Sivan and Vasilis Syrgkanis. Vickrey auctions for irregular distri-
butions. In Web and Internet Economics, pages 422–435. Springer, 2013.

Swee Chuan Tan, Kai Ming Ting, and Fei Tony Liu. Fast anomaly detection for
streaming data. In IJCAI, pages 1511–1516, 2011.

William Thomson. Eliciting production possibilities from a well-informed manager.
Journal of Economic Theory, 20(3):360–380, 1979.

Christine L Tsien and James C Fackler. Poor prognosis for existing monitors in the
intensive care unit. Critical care medicine, 25(4):614–619, 1997.

http://www.jstor.org/stable/2549561
http://www.jstor.org/stable/2549561

BIBLIOGRAPHY 159

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):
1134–1142, 1984.

Hal R. Varian. The nonparametric approach to demand analysis. Econometrica,
50(4):pp. 945–973, 1982. ISSN 00129682. URL http://www.jstor.org/stable/

1912771.

Hal R Varian. Revealed preference. Samuelsonian Economics and the Twenty-First
Century, 2006.

Hal R Varian. Position auctions. international Journal of industrial Organization, 25
(6):1163–1178, 2007.

Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-
matical Software, 11(1):3757, 1985.

John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behav-
ior. Princeton University Press, 1944.

Kevin Waugh, Brian D. Ziebart, and J. Andrew Bagnell. Computational rationaliza-
tion: The inverse equilibrium problem. 2013.

Dantong Yu, Gholamhosein Sheikholeslami, and Aidong Zhang. Findout: finding
outliers in very large datasets. Knowledge and Information Systems, 4(4):387–412,
2002.

Ji Zhang and Hai Wang. Detecting outlying subspaces for high-dimensional data: the
new task, algorithms, and performance. Knowledge and information systems, 10
(3):333–355, 2006.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Navigate like
a cabbie: Probabilistic reasoning from observed context-aware behavior. In Proc.
Ubicomp, pages 322–331, 2008.

http://www.jstor.org/stable/1912771
http://www.jstor.org/stable/1912771

	Abstract
	Acknowledgments
	Introduction
	Research Goals
	Goal 1: Understanding Agents Through Data
	Goal 2: Robustness to Incentives

	Contributions of the Thesis
	Part I: Learning
	Part II: Incentives

	I Learning
	Learning Optimal Auctions
	Introduction
	Our Results
	Why Irregular Distributions Are Interesting
	Why Irregular Distributions Are Hard
	Related Work

	Preliminaries
	The Empirical CDF and the DKW Inequality
	Optimal Auctions using the Revenue Curve
	Notation

	Additive Loss in Revenue for Single-Item Auctions
	The Empirical Myerson Auction
	Additive Revenue Loss in Terms of Revenue Curves
	Bounding the Error in the Revenue Curve

	Matroid and Position Environments
	Position Auctions
	Matroid Environments

	No-Regret Algorithm
	Unbounded Distributions
	Reduced Information Model
	Lower Bound

	Learning Utilities in Succinct Games
	Introduction
	Our Contributions.
	Related Work

	Preliminaries
	Succinct Games
	Succinct Representations of Equilibria
	What it Means to Rationalize Equilibria
	Non-Degeneracy Conditions
	The Inverse Game Theory Problem

	Learning Utilities in Succinct Games
	General Linear Succinct Games
	Inferring Utilities in Popular Succinct Sames

	Learning the Structure of Succinct Games

	Anomaly Detection in a Stream
	Introduction
	Defining Anomalies
	Forest Maintenance on a Stream
	Deletion of Points
	Insertion of Points

	Isolation Forest and Other Related Work
	The Isolation Forest Algorithm
	Other Related Work

	Experiments
	Synthetic Data
	Real Life Data: NYC Taxicabs

	Conclusions and Future Work
	Proof of Theorem 4.2

	II Incentives
	Online Prediction with Selfish Experts
	Introduction
	Our Results
	Related Work
	Organization

	Preliminaries and Model
	Standard Model
	Selfish Model
	Proper Scoring Rules
	Online Learning with Quadratic Losses

	Deterministic Algorithms for Selfish Experts
	Deterministic Online Prediction using a Spherical Rule
	True Loss of the Non-IC Standard Rule

	The Cost of Selfish Experts for IC algorithms
	Symmetric Strictly Proper Scoring Rules
	Beyond Symmetric Strictly Proper Scoring Rules

	The Cost of Selfish Experts for Non-IC Algorithms
	Randomized Algorithms: Upper and Lower Bounds
	Impossibility of Vanishing Regret
	An IC Randomized Algorithm for Selfish Experts

	Simulations
	Data-Generating Processes
	Results

	Omitted Proofs
	Proof of Theorem 5.12
	Proof of Lemma 5.20
	Proof of Lemma 5.25
	Proof of Theorem 5.30
	Proof of Theorem 5.33

	Selecting a Strictly Proper Scoring Rule

	Incentives in Bitcoin Mining Pools
	Introduction
	Preliminaries
	Reward Functions and History Transcripts
	Miner Strategy
	Reward Function Desiderata
	Common examples
	Ensuring Steady Rewards

	Incentive Compatibility
	Incentive Compatibility of Existing Methods
	Proportional Reward Function
	Pay-Per-Share Reward Function

	A New IC Reward Function
	The IC Reward Function
	Providing a Steady Payment Stream

	Incentive Compatibility of PPLNS
	The PPLNS Reward Function
	Incentive Compatibility of PPLNS

	Simulations
	Conclusions & Open Problems
	Omitted Proofs
	Proof of Lemma 6.4
	Proof of Lemma 6.6

	Incentive Compatibility with Preemptions
	Proportional

	Multiple Pools

