
Robust Random Cut Forest Based Anomaly Detection On Streams

Sudipto Guha SUDIPTO@CIS.UPENN.EDU

University of Pennsylvania, Philadelphia, PA 19104.

Nina Mishra NMISHRA@AMAZON.COM

Amazon, Palo Alto, CA 94303.

Gourav Roy GOURAVR@AMAZON.COM

Amazon, Bangalore, India 560055.

Okke Schrijvers OKKES@CS.STANFORD.EDU

Stanford University, Palo Alto, CA 94305.

Abstract
In this paper we focus on the anomaly detection
problem for dynamic data streams through the
lens of random cut forests. We investigate a ro-
bust random cut data structure that can be used
as a sketch or synopsis of the input stream. We
provide a plausible definition of non-parametric
anomalies based on the influence of an unseen
point on the remainder of the data, i.e., the exter-
nality imposed by that point. We show how the
sketch can be efficiently updated in a dynamic
data stream. We demonstrate the viability of the
algorithm on publicly available real data.

1. Introduction
Anomaly detection is one of the cornerstone problems in
data mining. Even though the problem has been well stud-
ied over the last few decades, the emerging explosion of
data from the internet of things and sensors leads us to re-
consider the problem. In most of these contexts the data
is streaming and well-understood prior models do not ex-
ist. Furthermore the input streams need not be append only,
there may be corrections, updates and a variety of other dy-
namic changes. Two central questions in this regard are
(1) how do we define anomalies? and (2) what data struc-
ture do we use to efficiently detect anomalies over dynamic
data streams? In this paper we initiate the formal study of
both of these questions. For (1), we view the problem from
the perspective of model complexity and say that a point is
an anomaly if the complexity of the model increases sub-
stantially with the inclusion of the point. The labeling of

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

a point is data dependent and corresponds to the external-
ity imposed by the point in explaining the remainder of the
data. We extend this notion of externality to handle “outlier
masking” that often arises from duplicates and near dupli-
cate records. Note that the notion of model complexity has
to be amenable to efficient computation in dynamic data
streams. This relates question (1) to question (2) which we
discuss in greater detail next. However it is worth noting
that anomaly detection is not well understood even in the
simpler context of static batch processing and (2) remains
relevant in the batch setting as well.

For question (2), we explore a randomized approach, akin
to (Liu et al., 2012), due in part to the practical success re-
ported in (Emmott et al., 2013). Randomization is a pow-
erful tool and known to be valuable in supervised learn-
ing (Breiman, 2001). But its technical exploration in the
context of anomaly detection is not well-understood and
the same comment applies to the algorithm put forth in (Liu
et al., 2012). Moreover that algorithm has several lim-
itations as described in Section 4.1. In particular, we
show that in the presence of irrelevant dimensions, cru-
cial anomalies are missed. In addition, it is unclear how
to extend this work to a stream. Prior work attempted so-
lutions (Tan et al., 2011) that extend to streaming, however
those were not found to be effective (Emmott et al., 2013).
To address these limitations, we put forward a sketch or
synopsis termed robust random cut forest (RRCF) formally
defined as follows.

Definition 1 A robust random cut tree (RRCT) on point
set S is generated as follows:

1. Choose a random dimension proportional to �i∑
j �j

,
where �i = maxx∈S xi −minx∈Sxi.

2. Choose Xi ∼ Uniform[minx∈S xi, maxx∈S xi]

3. Let S1 = {x|x ∈ S, xi ≤ Xi} and S2 = S \ S1 and
recurse on S1 and S2.

Robust Random Cut Forest Based Anomaly Detection On Streams

A robust random cut forest (RRCF) is a collection of inde-
pendent RRCTs.

The approach in (Liu et al., 2012) differs from the above
procedure in Step (1) and chooses the dimension to cut uni-
formly at random. We discuss this algorithm in more detail
in Section 4.1 and provide extensive comparison.

Following question (2), we ask: Does the RRCF data struc-
ture contain sufficient information that is independent of
the specifics of the tree construction algorithm? In this pa-
per we prove that the RRCF data structure approximately
preserves distances in the following sense:

Theorem 1 Consider the algorithm in Definition 1. Let
the weight of a node in a tree be the corresponding sum
of dimensions

∑
i �i. Given two points u, v ∈ S, define

the tree distance between u and v to be the weight of the
least common ancestor of u, v. Then the tree distance is
always at least the Manhattan distance L1(u, v), and in

expectation, at most O
(
d log |S|

L1(u,v)

)
times L1(u, v).

Theorem 1 provides a low stretch distance preserving em-
bedding, reminiscent of the Johnson-Lindenstrauss Lemma
(Johnson & Lindenstrauss, 1984) using random projections
for L2() distances (which has much better dependence on
d). The theorem is interesting because it implies that if
a point is far from others (as is the case with anomalies)
that it will continue to be at least as far in a random cut
tree in expectation. The proof of Theorem 1 follows along
the same lines of the proof of approximating finite metric
spaces by a collection of trees (Charikar et al., 1998). Most
of the proofs appear in the supplementary material.

The theorem shows that if there is a lot of empty space
around a point, i.e., γ = minv L1(u, v) is large, then we
will isolate the point within O(d log |S|/γ) levels from the
root. Moreover since for any p ≥ 1, the p-normed dis-
tance satisfies d1−1/pLp(u, v) ≥ L1(u, v) ≥ Lp(u, v) and
therefore the early isolation applies to all large Lp() dis-
tances simultaneously. This provides us a pointer towards
the success of the original isolation forest algorithm in low
to moderate dimensional data, because d is small and the
probability of choosing a dimension is not as important if
they are small in number. Thus the RRCF ensemble con-
tains sufficient information that allows us to determine dis-
tance based anomalies, without focusing on the specifics
of the distance function. Moreover the distance scales are
adjusted appropriately based on the empty spaces between
the points since the two bounding boxes may shrink after
the cut.

Suppose that we are interested in the sample maintenance
problem of producing a tree at random (with the correct
probability) from T (S − {x}) or from T (S ∪ {x}). In
this paper we prove that we can efficiently insert and delete
points into a random cut tree.

Theorem 2 (Section 3) Given a tree T drawn according

to T (S); if we delete the node containing the isolated point
x and its parent (adjusting the grandparent accordingly,
see Figure 2), then the resulting tree T ′ has the same proba-
bility as if being drawn from T (S−{x}). Likewise, we can
produce a tree T ′′ as if drawn at random from T (S ∪ {x})
is time which is O(d) times the maximum depth of T , which
is typically sublinear in |T |.
Theorem 2 demonstrates an intuitively natural behavior
when points are deleted — as shown in the schematic in
Figure 1. In effect, if we insert x, perform a few more op-
erations and then delete x, then not only do we preserve
distributions but the trees remain very close to each other
— as if the insertion never happened. This behavior is a
classic desiderata of sketching algorithms.

x

a

b

c

(a) Before: T

a

bc

(b) After: T ′

Figure 1. Decremental maintenance of trees.

The natural behavior of deletions is not true if we do not
choose the dimensions as in Step (1) of RRCF construc-
tion. For example, if we choose the dimensions uniformly
at random as in (Liu et al., 2012), suppose we build a tree
for (1, 0), (ε, ε), (0, 1) where 1 � ε > 0 and then delete
(1, 0). The probability of getting a tree over the two re-
maining points that uses a vertical separator is 3/4 − ε/2
and not 1/2 as desired. The probability of getting that tree
in the RRCF process (after applying Theorem 2) is 1 − ε,
as desired. This natural behavior under deletions is also not
true of most space partitioning methods –such as quadtrees
(Finkel & Bentley, 1974), kd-trees (Bentley, 1975), and R-
trees (Guttman, 1984). The dynamic maintenance of a dis-
tribution over trees in a streaming setting is a novel contri-
bution to the best of our knowledge and as a consequence,
we can efficiently maintain a tree over a sample of a stream:

Theorem 3 We can maintain a random tree over a sample
S even as the sample S is updated dynamically for stream-
ing data using sublinear update time and O(d|S|) space.

We can now use reservoir sampling (Vitter, 1985) to main-
tain a uniform random sample of size |S| or a recency-
biased weighted random sample of size |S| (Efraimidis &
Spirakis, 2006), in space proportional to |S| on the fly.
In effect, the random sampling process is now orthogo-
nal from the robust random cut forest construction. For
example to produce a sample of size ρ|S| for ρ < 1,
in an uniform random sampling we can perform straight-
forward rejection sampling; in the recency biased sample

Robust Random Cut Forest Based Anomaly Detection On Streams

in (Efraimidis & Spirakis, 2006) we need to delete the
(1− ρ)|S| lowest priority points. This notion of downsam-
pling via deletions is supported perfectly by Theorem 2 –
even for downsampling rates that are determined after the
trees have been constructed, during postprocessing. Thus,

Theorem 4 Given a tree T (S) for sample S, if there exists
a procedure that downsamples via deletion, then we have
an algorithm that simultaneously provides us a downsam-
pled tree for every downsampling rate.

Theorems 3 and 4 taken together separate the notion of
sampling from the analysis task and therefore eliminates
the need to fine tune the sample size as an initial parameter.
Moreover the dynamic maintenance of trees in Theorem 3
provides a mechanism to answer counterfactual questions
as given in Theorem 5.

Theorem 5 Given a tree T (S) for sample S, and a point
p we can efficiently compute a random tree in T (S ∪ {p}),
and therefore answer questions such as: what would have
been the expected depth had p been included in the sample?

The ability to answer these counterfactual questions are
critical to determining anomalies. Intuitively, we label a
point p as an anomaly when the joint distribution of in-
cluding the point is significantly different from the distri-
bution that excludes it. Theorem 5 allows us to efficiently
(pretend) sketch the joint distribution including the point
p. However instead of measuring the effect of the sampled
data points on p to determine its label (as is measured by
notions such as expected depth), it stands to reason that we
should measure the effect of p on the sampled points. This
leads us to the definition of anomalies used in this paper.

2. Defining Anomalies
Consider the hypotheses:

(a) An anomaly is often easy to describe – consider Waldo
wearing a red fedora in a sea of dark felt hats. While
it may be difficult for us to find Waldo in a crowd, if
we could forget the faces and see the color (as is the
case when Waldo is revealed by someone else) then
the recognition of the anomaly is fairly simple.

(b) An anomaly makes it harder to describe the remainder
of the data – if Waldo were not wearing the red fedora,
we may not have admitted the possibility that hats can
be colored. In essence, an anomaly displaces our at-
tention from the normal observation to this new one.

The fundamental task is therefore to quantify the shift in
attention. Suppose that we assign left branches the bit 0
and right branches the bit 1 in a tree in a random cut forest.
Now consider the bits that specify a point (excluding the
bits that are required to store the attribute values of the point
itself). This defines the complexity of a random model MT

which in our case corresponds to a tree T that fits the initial

data. Therefore the number of bits required to express a
point corresponds to its depth in the tree.

Given a set of points Z and a point y ∈ Z let f(y, Z, T) be
the depth of y in tree T . Consider now the tree produced
by deleting x as in Theorem 2 as T (Z − {x}). Note that
given T and x the tree T (Z−{x}) is uniquely1 determined.
Let the depth of y in T (Z −{x}) be f(y, Z −{x}, T) (we
drop the qualification of the tree in this notation since it is
uniquely defined).

x

a

b

c

10

10

q0, . . . , qr

(a) Tree T (Z)

a

bc

10

q0, . . . , qr

(b) Tree T (Z − {x})

Figure 2. A correspondence of trees

Consider now a point y in the subtree c in Figure 2a. Its
bit representation in T would be q0, . . . , qr, 0, 0, The
model complexity, denoted as |M(T)| the number of bits
required to write down the description of all points y in
tree T therefore will be |M(T)| = ∑

y∈Z f(y, Z, T). If
we were to remove x then the new model complexity is

|M(T ′)| =
∑

y∈Z−{x}
f(y, Z − {x}, T ′)

where T ′ = T (Z − {x}) is a tree over Z − {x}. Now
consider the expected change in model complexity under
a random model. However since we have a many to one
mapping from T (Z) to T (Z − {x}) as a consequence of
Theorem 2, we can express the second sum over T (Z) in-
stead of T ′ = T (Z − {x}) and we get

ET (Z) [|M(T)|]− ET (Z−{x}) [|M(T (Z − {x})|]

=
∑
T

∑
y∈Z−{x}

Pr [T]

(
f(y, Z, T)− f(y, Z − {x}, T ′)

)

+
∑
T

Pr [T] f(x, Z, T) (1)

Definition 2 Define the bit-displacement or displacement
of a point x to be the increase in the model complexity of
all other points, i.e., for a set Z, to capture the externality
introduced by x, define, where T ′ = T (Z − {x}),

DISP(x, Z) =
∑

T,y∈Z−{x}
Pr [T]

(
f(y, Z, T)−f(y, Z−{x}, T ′)

)

1The converse is not true, this is a many-to-one mapping.

Robust Random Cut Forest Based Anomaly Detection On Streams

Note the total change in model complexity is DISP(x, Z)+
g(x, Z) where g(x, Z) =

∑
T Pr [T] f(x, Z, T) is the ex-

pected depth of the point x in a random model. Instead of
postulating that anomalies correspond to large g(), we fo-
cus on larger values of DISP(). The name displacement is
clearer based on this lemma:

Lemma 1 The expected displacement caused by a point x
is the expected number of points in the sibling node of the
leaf node containing x, when the partitioning is done ac-
cording to the algorithm in Definition 1.

Shortcomings. While Definition 2 points towards a pos-
sible definition of an anomaly, the definition as stated are
not robust to duplicates or near-duplicates. Consider one
dense cluster and a point p far from away from the cluster.
The displacement of p will be large. But if there is a point q
very close to p, then q’s displacement in the presence of p is
small. This phenomenon is known as outlier masking. Du-
plicates and near duplicates are natural and therefore the
semantics of any anomaly detection algorithm has to ac-
commodate them.

Duplicate Resilience. Consider the notion that Waldo
has a few friends who help him hide – these friends are
colluders; and if we were to get rid of all the colluders
then the description changes significantly. Specifically, in-
stead of just removing the point x we remove a set C with
x ∈ C. Analogous to Equation (1) ,

ET (Z) [|M(T)|]− ET (Z−C) [|M(T (Z − C)|]
= DISP(C,Z) +

∑
T

∑
y∈C

Pr [T] f(y, Z, T) (2)

where DISP(C,Z) is the notion of displacement extended
to subsets denoted as, where T ′′ = T (Z − C),

∑
T,y∈Z−C

Pr [T]

(
f(y, Z, T)− f(y, Z − C, T ′′)

)
(3)

Absent of any domain knowledge it appears that the dis-
placement should be attributed equally to all the points in
C. Therefore a natural choice of determining C seems to
be max DISP(C,Z)/|C| subject to x ∈ C ⊆ Z. However
two problems arise. First there are too many subsets C, and
second, in a streaming setting it is likely we would be using
a sample S ⊂ Z. Therefore the supposedly natural choice
does not extend to samples. To avoid both issues, we al-
low the choice of C to be different for different samples S;
in effect we are allowing Waldo to collude with different
members in different tests! This motivates the following:

Definition 3 The Collusive Displacement of x denoted by
CODISP(x, Z, |S|) of a point x is defined as

E
S⊆Z,T

⎡
⎣ max
x∈C⊆S

1

|C|
∑

y∈S−C

(
f(y, S, T)− f(y, S − C, T ′′)

)⎤
⎦

Lemma 2 CODISP(x, Z, |S|) can be estimated efficiently.

While CODISP(x, Z, |S|) is dependent on |S|, the depen-
dence is not severe. We envision using the largest sample
size which is permitted under the resource constraints. We
arrive at the central characterization we use in this paper:

Definition 4 Outliers correspond to large CODISP().

3. Forest Maintenance on a Stream
In this section we discuss how Robust Random Cut Trees
can be dynamically maintained. In the following, let
RRCF (S) be a the distribution over trees by running Def-
inition 1 on S. Consider the following operations:

Insertion: Given T drawn from distribution RRCF (S)
and p
∈ S produce a T ′ drawn from RRCF (S ∪ {p}).
Deletion: Given T drawn from distribution RRCF (S) and
p ∈ S produce a T ′ drawn from RRCF (S−{p}). We need
the following simple observation.

Observation 1 Separating a point set S and p using an
axis-parallel cut is possible if and only if it is possible to
separate the minimal axis-aligned bounding box B(S) and
p using an axis-parallel cut.

The next lemma provides a structural property about RRCF
trees. We are interest in incremental updates with as few
changes as possible to a set of trees. Note that given a spe-
cific tree we have two exhaustive cases, that (i) the new
point which is to be deleted (respectively inserted) is not
separated by the first cut and (ii) the new point is deleted
(respective inserted) is separated by the first cut. Lemma 3
addresses these for collections of trees (not just a single
tree) that satisfy (i) and (ii) respectively.

Lemma 3 Given point p and set of points S with an axis
parallel minimal bounding box B(S) such that p
∈ B:

(i) For any dimension i, the probability of choosing an
axis parallel cut in a dimension i that splits S using
the weighted isolation forest algorithm is exactly the
same as the conditional probability of choosing an
axis parallel cut that splits S ∪ {p} in dimension i,
conditioned on not isolating p from all points of S.

(ii) Given a random tree of RRCF (S ∪ {p}), condi-
tioned on the fact the first cut isolates p from all points
of S, the remainder of the tree is a random tree in
RRCF (S).

3.1. Deletion of Points

We begin with Algorithm 1 which is deceptively simple.

Robust Random Cut Forest Based Anomaly Detection On Streams

Algorithm 1 Algorithm ForgetPoint.

1: Find the node v in the tree where p is isolated in T .
2: Let u be the sibling of v. Delete the parent of v (and of

u) and replace that parent with u (i.e., we short circuit
the path from u to the root).

3: Update all bounding boxes starting from u’s (new) par-
ent upwards – this state is not necessary for deletions,
but is useful for insertions.

4: Return the modified tree T ′.

Lemma 4 If T were drawn from the distribution
RRCF (S) then Algorithm 1 produces a tree T ′ which
is drawn at random from the probability distribution
RRCF (S − {p}).

Lemma 5 The deletion operation can be performed in
time O(d) times the depth of point p.

Observe that if we delete a random point from the tree, then
the running time of the deletion operation is O(d) times the
expected depth of any point. Likewise if we delete points
whose depth is shallower than most points in the tree then
we can improve the running time of Lemma 5.

3.2. Insertion of Points

Given a tree T from RRCF (S) we produce a tree T ′ from
the distribution RRCF (S ∪ {p}). The algorithm is pro-
vided in Algorithm 2. Once again we will couple the deci-
sions that is mirror the same split in T ′ as in T , as long as
p is not outside a bounding box in T . Up to this point we
are performing the same steps as in the construction of the
forest on S ∪ {p}, with the same probability.

Lemma 6 If T were drawn from the distribution
RRCF (S) then Algorithm 1 produces a tree T ′ which
is drawn at random from the probability distribution
RRCF (S ∪ {p}).

4. Isolation Forest and Other Related Work
4.1. The Isolation Forest Algorithm

Recall that the isolation forest algorithm uses an ensem-
ble of trees similar to those constructed in Definition 1,
with the modification that the dimension to cut is chosen
uniformly at random. Given a new point p, that algorithm
follows the cuts and compute the average depth of the point
across a collection of trees. The point is labeled an anomaly
if the score exceeds a threshold; which corresponds to av-
erage depth being small compared to log |S| where S is
suitably sized sample of the data.

The advantage of the isolation forest is that different di-
mensions are treated independently and the algorithm is in-
variant to scaling different dimensions differently. How-
ever consider the following example.

Algorithm 2 Algorithm InsertPoint.

1: We have a set of points S′ and a tree T (S′). We want
to insert p and produce tree T ′(S′ ∪ {p}.

2: If S′ = ∅ then we return a node containing the single
node p.

3: Otherwise S′ has a bounding box B(S′) = [x�
1, x

h
1] ×

[x�
2, x

h
2]× · · · [x�

d, x
h
d]. Let x�

i ≤ xh
i for all i.

4: For all i let x̂�
i = min{pi, x�

i} and x̂h
i = max{xh

i , pi}.

5: Choose a random number r ∈ [0,
∑

i(x̂
h
i − x̂�

i)].
6: This r corresponds to a specific choice of a cut in the

construction of RRCF (S′∪{p}). For instance we can

compute argmin{j|∑j
i=1(x̂

h
i − x̂�

i) ≥ r} and the cut

corresponds to choosing x̂�
j +

∑j
i=1(x̂

h
i − x̂�

i) − r in
dimension j.

7: If this cut separates S′ and p (i.e., is not in the interval
[x�

j , x
h
j]) then and we can use this as the first cut for

T ′(S′ ∪ {p}). We create a node – one side of the cut is
p and the other side of the node is the tree T (S′).

8: If this cut does not separate S′ and p then we throw
away the cut! We choose the exact same dimension as
T (S′) in T ′(S′ ∪ {p}) and the exact same value of the
cut chosen by T (S′) and perform the split. The point p
goes to one of the sides, say with subset S′′. We repeat
this procedure with a smaller bounding box B(S′′) of
S′′. For the other side we use the same subtree as in
T (S′).

9: In either case we update the bounding box of T ′.

Example 1 (IRRELEVANT DIMENSIONS.) Suppose we
have two clusters of 1000 points each corresponding to
x1 = ±5 in the first dimension, and xi = 0 in all remain-
ing dimensions i. In all coordinates (including x1) we
add a random Gaussian noise with mean 0 and standard
deviation 0.01 simulating white noise. Now consider 10
points with x1 = 0 and the same behavior in all the other
coordinates. When d = 2 the small cluster of points in the
center is easily separated by the isolation forest algorithm
which treats the dimensions independently. When d = 30
the vast majority of cuts are in irrelevant dimensions, and
the algorithm fails (when run on entire data) as shown in
Figure 1a for a single trial over 100 trees. For 10 trials
(for the same data set), the algorithm determined that 430,
270, 147, 220, 48, 244, 193,158, 250 and 103 points had
the same of higher anomaly score than the point with the
highest anomaly score among the 10 points (the identity of
this point varied across the trials).

In essence, the algorithm either produces too many false
alarms or does not have good recall. Note that AUC is
not a relevant measure here since the class sizes between
anomalous and non-anomalous are skewed, 1 : 200. The
results were consistent across multiple data sets generated
according to the example. Figure 3b shows a correspond-
ing single trial using CODISP(). The CODISP() measure
places the 10 points in the largest 20 values most of the

Robust Random Cut Forest Based Anomaly Detection On Streams

time. Example 1 shows that scale independence therefore
can be negative feature if distance is a meaningful concept
in the dataset. However in many tasks that depend on de-
tecting anomalies, the relevance of different dimensions is
often unknown. The question of determining the appro-
priate scale of measurement often has far reaching conse-
quences in data analysis.

-6 -4 -2 0 2 4 6 -0.1 0 0.1

-0.1

 0

 0.1

 0.1

 0.2

 0.3

(a) Performance of Isolation Forest (Liu et al., 2012). Note that
the score never exceeds 0.3 whereas a score of 0.5 corresponds to
an outlier. Note also that the two clusters are not distinguishable
from the 10 points near origin outliers in depth values (color).

-6 -4 -2 0 2 4 6 -0.1

 0

 0.1
-0.1

 0

 0.1

 0
 50
 100
 150
 200

(b) Performance of CODISP(x, Z, |Z|). Observe that the clus-
ters and outliers are separated; some of the extremal points in the
clusters have the same (collusive) displacement as the 10 points
near the origin, which is expected.

Figure 3. The result of running isolation forest and CODISP() on

the input in Example 1 for d = 30.

A modified version of the above example also is helpful in
arguing why depth of a point is a not always helpful in char-
acterizing anomalies, even in low dimensions. Consider,

Example 2 (HELD OUT DATA.) Consider the same
dataset as in Example 1 in d = 2 dimensions. Suppose
that we have only sampled 100 points and all the samples
correspond to x1 = ±5. Suppose we now want to evaluate:
is the point (0, 0) an anomaly? Based on the samples the
natural answer is yes. The scoring mechanism of isolation
forest algorithm fails because once the two clusters are
separated, this new point (0, 0) behaves as a point in one
of the two other clusters! The situation however changes
completely if we include (0, 0) to build the trees.

The example explains why the isolation forest algorithm
is sensitive to sample size. However most anomalies are
not usually seen in samples – anomaly detection algorithms
should be measured on held out data. Note that Theorem 5
can efficiently solve the issue raised in Example 2 by an-
swering the contrafactual question of what is the expected
height has we observed (0, 0) in the sample (without re-
building the trees). However expected depth seems to gen-
erate more false alarms, as we investigate this issue further
in the supplementary material.

4.2. Other Related Work

The problem of (unsupervised) outlier detection has a rich
literature. We survey some of the work here; for an exten-
sive survey see (Aggarwal, 2013; Chandola et al., 2009)
and references therein. We discuss some of techniques
which are unrelated to the concepts already discussed.

Perhaps the most obvious definition of an anomaly is
density based outlier detection, which posits that a low-
probability events are likely anomalous. This has led to dif-
ferent approaches based on estimating the density of data
sets. For points in Rn, Knorr & Ng (1997; 1998; 1999);
Knorr et al. (2000) estimate the density by looking at the
number of points that are within a ball of radius d of a given
data point. The lower this number, the more anomalous the
data point is. This approach may break down when differ-
ent parts of the domain have different scales. To remedy
this, there a methods (Breunig et al., 1999; 2000) that look
at the density around a data point compared to its neigh-
borhood. A variation of the previous approach is to con-
sider a fixed k number of nearest neighbors and base the
anomaly score on this (Eskin et al., 2002; Zhang & Wang,
2006). Here the anomaly score is monotonically increas-
ing in the distances to the k nearest-neighbors. Taking the
idea of density one step further, some authors have looked
at finding structure in the data through clustering. The intu-
ition here is that for points that cannot easily be assigned to
a cluster, there is no good explanation for their existence.
There are several clustering algorithms that work well to
cluster part of the data, such as DBSCAN (Ester et al.,
1996) and STREAM (Guha et al., 2003). Additionally,
FindOut (Yu et al., 2002) removes points it cannot clus-
ter, and then recurses. Finally the notion of sketching used
in this paper is orthogonal to the notion used in (Huang
& Kasiviswanathan, 2015) which uses streaming low rank
approximation of the data.

5. Experiments
In the experiments, we focus on datasets where anomalies
are visual, verifiable and interpretable. We begin with a
synthetic dataset that captures the classic diurnal rhythm of
human activity. We then move to a real dataset reflecting
taxi ridership in New York City. In both cases, we compare
the performance of RRCF with IF.

A technique that turns out to be useful for detecting anoma-
lies in streams is shingling. If a shingle of size 4 is passed
over a stream, the first 4 values of the stream received
at time t1, t2, t3, t4 are treated as a 4-dimensional point.
Then, at time t5, the values at time t2, t3, t4, t5 are treated
as as the next four-dimensional point. The window slides
over one unit at each time step. A shingle encapsulates a
typical shape of a curve – a departure from a typical shape
could be an anomaly.

Robust Random Cut Forest Based Anomaly Detection On Streams

5.1. Synthetic Data

Many real datasets implicitly reflect human circadian
rhythms. For example, an eCommerce site may monitor
the number of orders it receives per hour. Search engines
may monitor search queries or ad clicks per minute. Con-
tent delivery networks may monitor requests per minute. In
these cases, there is a natural tendency to expect higher val-
ues during the day and lower values at night. An anomaly
may reflect an unexpected dip or spike in activity.

In order to test our algorithm, we synthetically generated a
sine wave where a dip is artificially injected around times-
tamp 500 that lasts for 20 time units. The goal is to deter-
mine if our anomaly detection algorithm can spot the be-
ginning and end of the injected anomaly. The experiments
were run with a shingle of length four, and one hundred
trees in the forest, where each tree is constructed with a
uniform random reservoir sample of 256 points. We treat
the dataset as a stream, scoring a new point at time t + 1
with the data structure built up until time t.

(a) The bottom red curve reflects the anomaly score produced by
IF. Note that the start of the anomaly is missed.

(b) The bottom red curve represents the anomaly score produced
by RRCF. Both the beginning and end of the anomaly are caught.

Figure 4. The top blue curve represents a sine wave with an artifi-

cially injected anomaly. The bottom red curve shows the anomaly

score over time.

In Figure 4a, we show the result of running IF on the sine
wave. For anomalies, detecting the onset is critical – and
even more important than detecting the end of an anomaly.
Note that IF misses the start of the anomaly at time 500.
The end of the anomaly is detected, however, by then the
system has come back to its normal state – it is not useful to
fire an alarm once the anomaly has ended. Next, consider

Figure 4b which shows the result of running RRCF on the
same sine wave. Observe that the two highest scoring mo-
ments in the stream are the end and the beginning of the
anomaly. The anomaly is successfully detected by RRCF.
While the result of only a single run is shown, the exper-
iment was repeated many times and the picture shown in
Figure 4 is consistent across all runs.

5.2. Real Life Data: NYC Taxicabs

Next we conduct a streaming experiment using taxi rid-
ership data from the NYC Taxi Commission2. We con-
sider a stream of the total number of passengers aggregated
over a 30 minute time window. Data is collected over a 7-
month time period from 7/14 – 1/15. Note while this is a
1-dimensional datasets, we treat it as a 48-dimensional data
set where each point in the stream is represented by a slid-
ing window or shingle of the last day of data, ignoring the
first day of data. The intuition is that the last day of activity
captures a typical shape of passenger ridership.

The following dates were manually labeled as anomalies
based on knowledge of holidays and events in NYC (Lavin
& Ahmad, 2015): Independence Day (7/4/14-7/6/14),
Labor Day (9/1/14), Labor Day Parade (9/6/14), NYC
Marathon (11/02/14), Thanksgiving (11/27/14), Christmas
(12/25/14), New Years Day (1/1/15), North American Bliz-
zard (1/26/15-1/27/15). For simplicity, we label a 30-
minute window an anomaly if it overlaps one of these days.

Stream We treat the data as a stream – after observing
points 1, . . . , i, our goal is to score the (i+ 1)st point. The
score that we produce for (i + 1) is based only on the pre-
vious data points 1, . . . , i, but not their labels. We use IF as
the baseline. While a streaming version was subsequently
published (Tan et al., 2011), since it was not found to im-
prove over IF (Emmott et al., 2013), we consider a more
straightforward adaptation. Since each tree in the forest is
created based on a random sample of data, we simply build
each tree based on a random sample of the stream, e.g., uni-
form or time-decayed as previously referenced. Our aim
here is to compare to the baseline with respect to accuracy,
not running time. Each tree can be updated in an embar-
rassingly parallel manner for a faster implementation.

Metrics To quantitatively evaluate our approach, we re-
port on a number of precision/recall-related metrics. We
learn a threshold for a good score on a training set and re-
port the effectiveness on a held out test set. The training set
contains all points before time t and the test set all points
after time t. The threshold is chosen to optimize the F1-
measure (harmonic mean of precision and recall). We fo-
cus our attention on positive precision and positive recall to
avoid “boy who cried wolf” effects (Tsien & Fackler, 1997;
Lawless, 1994).

2http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

Robust Random Cut Forest Based Anomaly Detection On Streams

Table 1. Comparison of Baseline Isolation Forest to proposed Robust Random Cut Forest
Method Sample Positive Positive Negative Negative Accuracy AUC

Size Precision Recall Precision Recall
IF 256 0.42 (0.05) 0.37 (0.02) 0.96 (0.00) 0.97 (0.01) 0.93 (0.01) 0.83 (0.01)
RRCF 256 0.87 (0.02) 0.44 (0.04) 0.97 (0.00) 1.00 (0.00) 0.96 (0.00) 0.86 (0.00)
IF 512 0.48 (0.05) 0.37 (0.01) 0.97 (0.01) 0.96 (0.00) 0.94 (0.00) 0.86 (0.00)
RRCF 512 0.84 (0.04) 0.50 (0.03) 0.99 (0.00) 0.97 (0.00) 0.96 (0.00) 0.89 (0.00)
IF 1024 0.51 (0.03) 0.37 (0.01) 0.96 (0.00) 0.98 (0.00) 0.94 (0.00) 0.87 (0.00)
RRCF 1024 0.77 (0.03) 0.57 (0.02) 0.97 (0.00) 0.99 (0.00) 0.96 (0.00) 0.90 (0.00)

Method Segment Segment Time to Time to Prec@5 Prec@10 Prec@15 Prec@20
Precision Recall Detect Onset Detect End

IF 0.40 (0.09) 0.80 (0.09) 22.68 (3.05) 23.30 (1.54) 0.52 (0.10) 0.50 (0.00) 0.34 (0.02) 0.28 (0.03)
RRCF 0.65 (0.14) 0.80 (0.00) 13.53 (2.05) 10.85 (3.89) 0.58 (0.06) 0.49 (0.03) 0.39 (0.02) 0.30 (0.00)

Table 2. Segment-Level Metrics and Precision@K

For the finer granularity data in the taxi cab data set, we
view the ground truth as segments of time when the data is
in an anomalous state. Our goal is to quickly and reliably
identify these segments. We say that a segment is identified
in the test set if the algorithm produces a score over the
learned threshold anytime during the segment (including
the sliding window, if applicable).

Results In the experiments, there were 200 trees in the
forest, each computed based on a random sample of 1K
points. Note that varying the sample size does not alter the
nature of our conclusions. Since ridership today is likely
similar to ridership tomorrow, we set our time-decayed
sampling parameter to the last two months of ridership. All
results are averaged over multiple runs (10). Standard de-
viation is also reported. Figure 5 shows the result of the
anomaly scores returned by CODISP().

Figure 5. NYC taxi data and CODISP(). Note that Thanksgiving

is not captured.

In a more detailed evaluation, the first set of results (Ta-
ble 1) show that the proposed RRCF method is more accu-
rate than the baseline. Particularly noteworthy is RRCF’s
higher positive precision, which implies a lower false alarm
rate. In Table 2, we show the segment-based results.
Whereas Table 1 may give more credit for catching a long
anomaly over a short one, the segment metric weighs each
alarm equally. The proposed RRF method not only catches

more alarms, but also catches them more quickly. The units
are measured in 30 minute increments – so 11 hours on av-
erage to catch an alarm on the baseline and 7 hours for the
RRCF method. These actual numbers are not as important
here, since anomaly start/end times are labeled somewhat
loosely. The difference in time to catch does matter. Preci-
sion@K is also reported in Table 2.

Discussion: Shingle size, if used, matters in the sense
that shingles that are too small may catch naturally vary-
ing noise in the signal and trigger false alarms. On the
other hand, shingles that are too large may increase the
time it takes to find an alarm, or miss the alarm altogether.
Time decay requires knowledge of the domain. Sample size
choice had less effect – with varying sample sizes of 256,
512 and 1K the conclusions are unchanged on this dataset.

6. Conclusions and Future Work
We introduced the robust random cut forest sketch and
proved that it approximately preserves pairwise distances.
If the data is recorded in the correct scale, distance is
crucially important to preserve for computations, and not
just anomaly detection. We adopted a model-based def-
inition of an anomaly that captures the differential effect
of adding/removing a point on the size of the sketch. Ex-
periments suggest that the algorithm holds great promise
for fighting alarm fatigue as well as catching more missed
alarms.

We believe that the random cut forest sketch is more bene-
ficial than what we have established. For example, it may
also be helpful for clustering since pairwise distances are
approximately preserved. In addition, it may help detect
changepoints in a stream. A changepoint is a moment in
time t where before time t the data is drawn from a distri-
bution D1 and after time t the data is drawn from a distri-
bution D2, and D1 is sufficiently different from D2 (Kifer
et al., 2004; Dasu et al., 2006). By maintaining a sequence
of sketches over time, one may be able to compare two
sketches to determine if the distribution has changed.

Robust Random Cut Forest Based Anomaly Detection On Streams

Acknowledgments
We thank Roger Barga, Charles Elkan, and Rajeev Rastogi
for many insightful discussions. We also thank Dan Blick,
Praveen Gattu, Gaurav Ghare and Ryan Nienhuis for their
help and support.

References
Aggarwal, Charu C. Outlier Analysis. Springer New York,

2013.

Bentley, Jon Louis. Multidimensional binary search trees
used for associative searching. Commun. ACM, 18(9):
509–517, September 1975. ISSN 0001-0782.

Breiman, Leo. Random forests. Machine Learning, pp.
5–32, 2001.

Breunig, Markus M, Kriegel, Hans-Peter, Ng, Raymond T,
and Sander, Jörg. Optics-of: Identifying local outliers.
In PKDD, pp. 262–270, 1999.

Breunig, Markus M, Kriegel, Hans-Peter, Ng, Raymond T,
and Sander, Jörg. Lof: identifying density-based local
outliers. In ACM sigmod record, volume 29, pp. 93–104,
2000.

Chandola, Varun, Banerjee, Arindam, and Kumar, Vipin.
Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):15, 2009.

Charikar, Moses, Chekuri, Chandra, Goel, Ashish, Guha,
Sudipto, and Plotkin, Serge. Approximating a finite met-
ric by a small number of tree metrics. Proceedings of
Foundations of Computer Science, pp. 379–388, 1998.

Dasu, Tamraparni, Krishnan, Shankar, Venkatasubrama-
nian, Suresh, and Yi, Ke. An information-theoretic ap-
proach to detecting changes in multi-dimensional data
streams. In In Proc. Symp. on the Interface of Statistics,
Computing Science, and Applications. Citeseer, 2006.

Efraimidis, Pavlos S. and Spirakis, Paul G. Weighted ran-
dom sampling with a reservoir. Information Processing
Letters, 97(5):181–185, 2006.

Emmott, Andrew F., Das, Shubhomoy, Dietterich, Thomas,
Fern, Alan, and Wong, Weng-Keen. Systematic con-
struction of anomaly detection benchmarks from real
data. In ACM SIGKDD Workshop on Outlier Detection
and Description, pp. 16–21, 2013.

Eskin, Eleazar, Arnold, Andrew, Prerau, Michael, Portnoy,
Leonid, and Stolfo, Sal. A geometric framework for un-
supervised anomaly detection. In Barbará, Daniel and
Jajodia, Sushil (eds.), Applications of Data Mining in
Computer Security, pp. 77–101, Boston, MA, 2002.

Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, and Xu,
Xiaowei. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD,
volume 96, pp. 226–231, 1996.

Finkel, R. A. and Bentley, J. L. Quad trees a data structure
for retrieval on composite keys. Acta Informatica, 4(1):
1–9, 1974.

Guha, Sudipto, Meyerson, Adam, Mishra, Nina, Mot-
wani, Rajeev, and O’Callaghan, Liadan. Clustering data
streams: Theory and practice. IEEE Trans. Knowl. Data
Eng., 15(3):515–528, 2003.

Guttman, Antonin. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pp. 47–57, 1984.

Huang, Hao and Kasiviswanathan, Shiva Prasad. Stream-
ing anomaly detection using randomized matrix sketch-
ing. Proceedings of the VLDB Endowment, 9(3):192–
203, 2015.

Johnson, William B. and Lindenstrauss, Joram. Extensions
of lipschitz mappings into a hilbert space. Contemporary
Mathematics 26. Providence, RI: American Mathemati-
cal Society, 1984.

Kifer, Daniel, Ben-David, Shai, and Gehrke, Johannes. De-
tecting change in data streams. In VLDB, pp. 180–191,
2004.

Knorr, Edwin M and Ng, Raymond T. A unified notion of
outliers: Properties and computation. In KDD, pp. 219–
222, 1997.

Knorr, Edwin M and Ng, Raymond T. Algorithms for min-
ing distancebased outliers in large datasets. In VLDB,
pp. 392–403, 1998.

Knorr, Edwin M and Ng, Raymond T. Finding intensional
knowledge of distance-based outliers. In VLDB, vol-
ume 99, pp. 211–222, 1999.

Knorr, Edwin M, Ng, Raymond T, and Tucakov, Vladimir.
Distance-based outliers: algorithms and applications.
VLDB Journal, 8(3-4):237–253, 2000.

Lavin, Alexander and Ahmad, Subutai. Evaluating
real-time anomaly detection algorithms-the numenta
anomaly benchmark. arXiv:1510.03336, 2015.

Lawless, Stephen T. Crying wolf: false alarms in a pedi-
atric intensive care unit. Critical care medicine, 22(6):
981–985, 1994.

Lindvall, T. Lectures on the coupling method. Wiley, New
York, 1992.

Liu, Fei Tony, Ting, Kai Ming, and Zhou, Zhi-Hua.
Isolation-based anomaly detection. ACM Trans. Knowl.
Discov. Data, 6(1):3:1–3:39, March 2012.

Robust Random Cut Forest Based Anomaly Detection On Streams

Tan, Swee Chuan, Ting, Kai Ming, and Liu, Fei Tony.
Fast anomaly detection for streaming data. In IJCAI, pp.
1511–1516, 2011.

Tsien, Christine L and Fackler, James C. Poor prognosis
for existing monitors in the intensive care unit. Critical
care medicine, 25(4):614–619, 1997.

Vitter, Jeffrey S. Random sampling with a reservoir.
ACM Transactions on Mathematical Software, 11(1):
3757, 1985.

Yu, Dantong, Sheikholeslami, Gholamhosein, and Zhang,
Aidong. Findout: finding outliers in very large datasets.
Knowledge and Information Systems, 4(4):387–412,
2002.

Zhang, Ji and Wang, Hai. Detecting outlying subspaces
for high-dimensional data: the new task, algorithms, and
performance. Knowledge and information systems, 10
(3):333–355, 2006.

