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Figure 1: Schematic depiction of the construction of Julia sets to provide a visual explanation for their complexity. In a number
of steps (top row), complexity builds up; a smooth animation (bottom row) shows how the shape is distorted per step.

Abstract
Julia sets based on quadratic polynomials have a very simple definition, yet a highly intricate shape. Our contri-
bution is to provide a visual explanation for this complexity. To this end we show the construction of Julia sets
as a dynamic process, in contrast to showing just a static image of the set itself. Our method is based on the
Inverse Iteration Method (IIM). We start with a disk, which is successively distorted. The crucial step is to show
an animation of the effect of taking a root of a subset of the complex plane. We present four different approaches
for this, using a Riemann surface, a corkscrew, a fan, and disks as metaphors. We packaged our results in an
interactive tool with a simple interface, such that everybody can view and inspect these for different Julia sets.
The results are useful for teaching complex analysis, promoting mathematics, entertainment, and, above all, as a
visual explanation for the complexity of Julia sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Julia sets are well-known and fascinating mathematical ob-
jects, whose complex shapes have amazed and inspired both
academics as well as the general public. They are a perfect
example of the beauty of mathematics: a concise definition
yields spectacular results. An intriguing question is where

† Okke Schrijvers is currently at Stanford University.

this complexity comes from. How can we understand why
a simple definition gives rise to such highly complex, intri-
cate shapes? Many have produced images of Julia sets, but
these static images do not answer this question. In this paper
we provide a visual answer by showing how Julia sets can
be constructed using a dynamic process, and show how the
complexity gradually increases.

Our inspiration here comes from the mundane and well-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



O. Schrijvers & J.J. van Wijk / Visual Explanation of the Complexity in Julia Sets

known puff pastry metaphor, which is often used in chaos
theory to explain the basics of sensitivity to initial condi-
tions. Puff pastry is made in a number of steps, where in
each step the dough is stretched and folded. Many layers
result, and points that were initially close are wide apart.
This metaphor is easy to understand, because each iteration
is not a jump from one state to the next, but a smooth and
easy to understand deformation of the object. We show how
this metaphor can be used to construct Julia sets, using a se-
quence of animated steps, where in each step the surface is
smoothly distorted, and show how this process gives a visual
explanation of the complexity of Julia sets. Julia sets emerge
as the result of an iterative process of complex functions.
Our method is based on the observation that complex func-
tions have firm roots in geometric transformations and can
be understood visually [Nee99].

In Section 2 we discuss related work. For our purposes,
the Inverse Iteration Method is most useful. We start with a
disk, which we iteratively distort into more complex shapes.
A model for this is presented in Section 3. One key prob-
lem is to visualize taking the n-th root of a subset of the
complex plane. We present four different solutions, based
on different metaphors and strategies for cutting and animat-
ing a subset of the complex plane, and thereby provide novel
solutions for the visualization of these multivalued complex
functions, based on homotopic mapping. We have integrated
our approach in a standalone demonstration tool, which we
present in Section 4, along with a number of examples. We
aimed here at providing users immediate access to the re-
sults as well as enabling them to experiment with a variety
of options. Our colleagues from the Mathematics department
confirmed that such a tool can be very useful to engage, mo-
tivate, and teach students about complex functions in gen-
eral and fractal sets in particular. It can also be used as a
visual example for chaos theory, as it shows how iterations
and non-linearity lead to complexity. Finally, we discuss the
work and identify future challenges in Section 5.

2. Background

In the early twentieth century Pierre Fatou and Gaston Julia
initiated the study of the dynamics of complex polynomial
and rational maps. After 1925 interest vanished, but it re-
vived in the seventies thanks to Mandelbrot’s discovery of
the set that bears his name and the spectacular images that
were made using computer graphics [Man77, Man82, PR87,
Pe88], as well as by the strongly increasing interest in chaos
theory [Gle87]. Visualization is used by mathematicians and
scientists who are interested in the inherent structure and
complexity of the objects, but also, their fascinating shapes
have intrigued a large audience, and images of Julia sets have
found their way to popular culture.

The filled Julia set K of a complex function f : C→ C is
defined as the set of points z∈C that do not escape to infinity

under the iteration sequence z j+1 = f (z j) with z0 = z, i.e.,

K = {z ∈ C | ∀ j ∈ N : |z j| ≤C} (1)

for some constant C ∈ R. The Julia set J is the boundary of
the filled Julia set. An intensively studied type is the family
of quadratic Julia sets Jc (and filled in versions Kc), where
for f a quadratic polynomial f (z) = z2 + c is used with pa-
rameter c ∈ C, yielding the iteration sequence

z j+1 = z2
j + c.

Many have developed algorithms and applications to visu-
alize Julia sets. The simplest approach is to use forward it-
eration, directly based on the definition of Julia sets. First,
associate each pixel of a raster display with a point z in the
complex plane. Next, for each pixel, assign z to z0 and iter-
ate a number of times. If |z j| > C, the pixel is outside and
colored white; otherwise if j > N, where N is a fixed num-
ber of iterations, the pixel is assumed to be inside the filled
Julia set and is colored black. Typically C = 2 is used, as
this is proven to be sufficient for connected quadratic Julia
sets [PR87]. This algorithm yields a simple black on white
image. More insight in the structure can be obtained by col-
oring the outside of the filled Julia set by how many itera-
tions it takes for a point to escape beyond the constant C,
known as encirclement [PJS03]. The resulting images sug-
gest that the Julia set is generated by a circle that is locally
deformed to create a more complex curve, similar to a Koch
curve. This is not correct, as is discussed in Section 4. Also,
instead of the number of iterations, a continuous value (the
potential) can be shown via a color scale or height that in-
dicates the distance to the Julia set, yielding spectacular im-
ages. Other options for annotation are the use of field lines
and equipotential lines.

Insight in the internal structure of the filled Julia set can
be obtained via coloring by basin of attraction. Points that
do not escape are usually attracted to a cycle of one or more
points ai, i = 1, . . . ,m, the so called attractor. The interior of
the filled Julia set is the basin of attraction of the attractor.
We can also consider the basin of attraction per point of the
attractor ai, i.e., the set of points that converge to ai after
repeated cycles of m iterations. Insight in the internal struc-
ture of the filled Julia set is obtained by assigning a different
color to each such basin.

These approaches based on forward iteration produce
static images of Julia sets. They show the complexity, but do
not give any explanation for the cause of this complexity. We
argue that the latter can be achieved by showing an anima-
tion where Julia sets are constructed incrementally. To this
end, we consider the Inverse Iteration Method (IIM), which
is an alternative approach to generate images of Julia sets.
Given a point z0 that belongs to a quadratic Julia set, its two
preimages (also belonging to the Julia set) are given by

z1 =±
√

z0− c.

Recursive application of this recipe leads to an exponentially

c© 2013 The Author(s)
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growing set of points of the Julia set, which will quickly
exhaust memory. An alternative is to use an approach of-
ten used for Iterated Function Systems, known as the Chaos
Game: at each iteration, randomly pick the positive or nega-
tive root to be used as next point.

Images of Iterate Function Systems can also be generated
with an image based approach [vWS04]. Starting with an
image of a shape, for instance a circle or a square, multiple
scaled copies of this image are rendered and blended. Next,
this step is done again for the resulting image, which yields
a more complex image. Repeating this step quickly leads to
an image of an Iterated Function System. Recently, de Smit
et al. [dSMP∗12] used a similar approach to produce images
of Julia sets.

We do not aim at producing novel visualizations of Ju-
lia sets, but instead we focus on providing insight in the
generating process. The image based approach provides a
good starting point, as a sequence of discrete images is pro-
duced with increasing complexity. The next challenge is to
smoothly animate each step in this process. This implies
that complex mappings have to be visualized and animated
smoothly. A complex function can be interpreted as a map-
ping of a plane to itself, which is conceptually simple, but
would require four dimensions to show as a direct analog of
the display of real functions as a graph. One approach is to
show mapped isoparameter lines, yielding a distorted grid.
Color can be used to give more insight in the fate of the
domain after mapping. To visualize multi-valued functions
the third dimension can be used. Here, the grid is typically
shown on a Riemann surface, such that different branches
(such as positive and negative roots) are assigned to differ-
ent parts of the surface. In combination with lifted domain
coloring [PP09] insightful images are obtained.

To show the mapping induced by complex functions, an-
imation can be used. Animation is certainly not a panacea
[TMB02], but we do consider it to be highly useful here.
We use puff pastry as metaphor, and hence the use of ani-
mation meets the congruence principle of Tversky and her
colleagues. Furthermore, it gives a vivid display well suited
for educational purposes. Finally, we could not think of a
more effective method, and found it difficult to explain what
is going on via static images.

On the web many examples can be found of animations
in 2D and 3D of mathematical concepts. Some inspiring ex-
amples are the work of Wegenkittl et al. on visualizing dy-
namical systems [WGP97], the work of Arnold and Rog-
ness [AR08] on the visualization of Möbius transformations;
tutorial examples of Arnold for various complex maps us-
ing homotopic mappings [Arn]; the package f (z) of Lascaux
Software [Las]; a playful version of complex mappings has
been provided by Kalantari [Kal04]; the very clear anima-
tions of Jason Ross show complex functions and multival-
uedness [Ros]. Parallel with the work described here, Steven
Wittens [Wit13] has developed animations to show the con-

struction of Julia fractals. Several ideas are shared, such as
the use of inverse iteration. In our terminology, he uses the
Disks metaphor. However, per step the fate of a single disk
is shown, followed by copying the result afterwards, instead
of showing multiple disks simultaneously; some other dif-
fences are that we show other metaphors and use color to
highlight deformations, the attractor and basins of attraction.

3. Model

We now present our model for the iterative construction of
the Julia set, using moving and distorting surfaces. We start
with some basic notions, followed by a generic model. Our
approach is based on the Inverse Iteration Method, but in-
stead of applying it to single points, we apply it to a set
of points simultaneously, and aim to show the effect of it-
erations by animation of this set. We present four different
solutions for the details of the animation. We aim to give a
complete, technical description, such that our approach can
be reproduced easily; examples of the resulting animations
can be found in the accompanying video.

3.1. Basics

We consider a slightly generalized version of the quadratic
Julia sets Jc, instead of using a power of 2, we use a power
of n, where n is an integer larger than 1. In forward iteration,
the basic step is then

z j+1 = zn
j + c. (2)

Using polar coordinates r and φ , this step can easily be in-
terpreted geometrically, as is explained in any basic course
on complex functions. Using z j = r(cosφ + isinφ) = reiφ

we get z j+1 = rneiφn + c, in other words, the angle φ is
multiplied by n, the radius r is replaced by its n−th power,
and finally the point is translated over c, see Figure 2a.
Also, a disk {z ∈ C | |z| ≤ A} is transformed into a disk
{z∈C | |z−c| ≤ An}, centered around c with a radius which
is the n-th power of the original radius A. Each sector of an-
gle 2π/n maps to a full disk.

To show how the Julia set emerges as a sequence of itera-
tions, we base our approach on the Inverse Iteration Method.
We start with a disk with radius A, centered around c, repeat-
edly apply the inverse step

z j+1 = (z j− c)1/n (3)

and show this via a smooth animation, shown schematically
in Figure 2b and c. The challenge here is that this mapping is
multi-valued; each point z j 6= c is mapped to n points z j+1.
As a result, the complex plane is covered by multiple sheets
called branches. The center of the disk is called a branch
point, and branches meet at branch cuts. We must decide
how to make the different branches visible as well as how
many branch cuts to use and where to position these.

c© 2013 The Author(s)
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(a) Forward mapping.
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(b) Inverse mapping.
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(c) Animated inverse mapping.

Figure 2: Mapping f (z) = zn + c. Forward and inverse mapping are shown, as well as the notation used in the animated model.

We first define a generic model. We describe the motion
in the complex plane as

z(r,φ , t) = s(r, t)eiθ(φ ,t)+d(t), (4)

with r ∈ [0,A], the initial distance to the center c of the disk;
φ ∈ [φ0,φ0 + 2πn), the initial angle; and with t ∈ [0,T ] a
time parameter from start time 0 to end time T . Note that the
width of the interval for φ has to be 2πn, such that multi-
valuedness can be dealt with, but the lower bound φ0 of this
interval is not fixed. The functions s, θ , and d model the
variation of the radius, angle, and displacement over time,
and are subject to the following constraints:

s(r,0) = r, θ(φ ,0) = φ , d(0) = c,
s(r,T ) = r1/n, θ(φ ,T ) = φ/n, d(T ) = 0.

Substitution shows that these give the desired result:

z(r,φ ,0) = reiφ + c,

z(r,φ ,T ) = (z(r,φ ,0)− c)1/n.

To handle multiple branches, we embed the complex plane
in 3D, and model this moving surface as

p(r,φ , t) =

 Re(z(r,φ , t))
Im(z(r,φ , t))

h(r,φ , t)


where h denotes the offset from the plane, with the con-
straints h(r,φ ,0) = h(r,φ ,T ) = 0.

Next, we consider the animation: the definition of s(r, t),
θ(φ , t), d(t), and h(r,φ , t). Three different aspects have to
be addressed. First, the fact that there are n roots for z j has
to be dealt with by splitting the original disk; second, the ex-
ponentiation has to be shown; and third, the disk has to be
moved to the origin. We denote these aspects by S (split), E
(exponentiation), and M (move). We use two auxiliary func-
tions to describe transitions for animation purposes. Linear
interpolation of a value v from v1 to v2 is described by

LX (v1,v2, t)=


v1 if t ≤ tX1
v1 +

t−tX1
tX2−tX1

(v2− v1) if tX1 < t < tX2
v2 if t ≥ tX2

where the label X is S,E, or M, and where [tX1, tX2] denotes
the interval where the transition for aspect X is made. To
describe intermediate changes (from 0 to v and back to 0)
we define a ramp function

IX (v, t) = LXa(0,v, t)−LXb(0,v, t),

by combining two linear interpolations. Here Xa refers to the
start of the ramp [tX1, tX2] and Xb to the end [tX3, tX4]. We
use simple linear transitions here, we found this to be satis-
factory for our purposes, but obviously smoother transitions
can be used.

3.2. Animation Types

We now describe various types of animations we defined
to show the iteration step, which we called the Corkscrew,
Fan, Riemann surface, and Disk model. Figure 3 provides
an overview of these, and the accompanying video shows
them in motion. We use C,F,R, and D as subscripts to de-
note differences between these where needed.

Corkscrew. The simple Corkscrew model is defined by

φ0 =−πn,

s(r, t) = rLE (1,1/n,t),

θ(φ , t) = LE(φ ,φ/n, t),

d(t) = LM(c,0, t),and

hC(φ , t) = IS((H/2πn) ·θ(φ , t), t),

where H is a scale parameter for the height. Most parameters
are interpolated in the obvious way. The height depends here
on the current angle θ , such that the net result is that the
disk is first unfolded like a corkscrew or spiral stairs, and
next rolled up again. For φ0 we use −πn rather than 0, to
obtain a more symmetric result and to minimize rotation of
the branch cuts for φ0 and φ0 +2πn.

Fan. In the Corkscrew model the branch point, i.e., the
center of the moving disk, is intermediately mapped to a line.

c© 2013 The Author(s)
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Figure 3: Overview of animation types. Each row shows an animation type (from top to bottom Corkscrew, Fan, Riemann
surface, and Disks), from left to right frames from two complete cycles are shown.

In the Fan model we use

hF (r,φ , t) = r1/nhC(φ , t).

such that the center of the disk remains a point. The initial
branch cuts are shown as curves in the shape of graphs of
root functions, as a result of using the final radius r1/n rather
than the instantaneous radius s(r, t) for scaling the height.

Riemann surface. In both previous models the surface is
interrupted after the multivaluedness is dealt with: the curves
for φ = φ0 and for φ = φ0 + 2πn, the opposite sides of the
single branch cut used, are offset from the plane in oppo-
site directions. Technically, this is not correct: topologically
the multifolded disk is one uninterrupted surface, i.e., a Rie-
mann surface. Based on the standard way to depict z1/n as a
Riemann surface, we get

hR(r,φ , t) = IS(H ·Re(z(r,φ ,T )), t),

similar to the videos of Ross [Ros]. A disadvantage of this
approach is that such a surface is self-intersecting, which is
unavoidable using embedding in 3D.

Disks. Another variation is to split up the multi-valued
surface into n branches, using n branch cuts, shown as sepa-
rate disks, moving in the complex plane. Initially, the angles
of each disk k,k = 0, . . . ,n−1, have a range

[αk1,αk2] = [φ0 +2πk,φ0 +2π(k+1)],

finally they should have a range

[βk1,βk2] = [αk1/n+2πmk,αk2/n+2πmk].

The terms 2πmk, with mk ∈ Z, are added to provide addi-
tional freedom here, while still satisfying the constraint that
the final disk is uniformly covered by pie-shaped segments.
Using mk = 0 gives strong rotations for some disks. Selec-
tion of mk such that

max(|βk1−αk1|, |βk2−αk2|)

is minimized gives better results. Figure 4 shows this
schematically. As an example, if mk = 0 would be used for
the pink disk, the purple branch-cut would have to rotate a
full circle; by adding 2π it can remain in place.

To separate the disks, we temporarily translate them in the
complex plane in a star-pattern, i.e.,

dD(k, t) = d(t)+ IS( D(cosγk + isinγk), t),

where D is the maximum offset used and γk = φ0 + 2π(k+
1/2)/n is the center angle of the sector of disk k. The posi-
tions and branch cuts are therefore dependent on our choice
for φ0, however this does not influence the final result of the
iteration. Finally, we use a small offset such that the disks
can be shown sorted for depth order: hD(k, t) = kε .

c© 2013 The Author(s)
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Figure 4: When the branches are shown as separate disks,
here for n= 3, their rotation can be reduced by adding offsets
2πmk, here 2π for the pink disk and −2π for the blue disk.
The purple, orange, and green lines represent the two sides
of the three branch cuts.

4. JuliaInMotion

We have implemented the model for animating the construc-
tion of Julia sets in an interactive application, which we
called JuliaInMotion (JIM). We first present an overview of
the application, including a discussion of design choices and
features. Next, we give examples how JIM can be used to
obtain insight in Julia sets, followed by a report of reactions
of prospective users.

4.1. Design

Implementation. We use an RGBA texture to represent the
filled Julia set, where the opacity channel A is used for set
membership. The method for generating new iterations is
based on Image-Based Iterated Function Systems [vWS04].
We take the texture of iteration j, apply the transforma-
tion given in Equation 3 for n branches, and render the re-
sults to a new texture for iteration j+ 1. Since the transfor-
mation is non-linear, we cannot simply use a transformed
quadrilateral. Therefore, we map the texture to a polar grid
mesh where each vertex is individually updated according to
Equation 3. We found that using a grid with 60 sectors and
30 rings was sufficient. Only the coordinates of one branch
have to be computed here, the other branches are identical
modulo a rotation around the origin. The new texture is ren-

Figure 5: The main window of JuliaInMotion.

dered using an off-screen framebuffer object and since at any
point only the results of two iterations are used, we can ping-
pong between two textures. Various other solutions are pos-
sible here, such as recalculating the texture anew per pixel
after one or more time steps, but we found the simple ap-
proach used here to be sufficient.

For the animations that show the transition between the
results of two iterations, we use the same polar grid and up-
date each vertex according to Equation 4. It is possible to
do this using shaders, but we found that generating vertex
positions using the CPU was efficient enough.

User Interface. The main window of JIM, shown in Fig-
ure 5, was designed to give the user quick and easy access to
all the functionality, without requiring detailed knowledge
of Julia sets or complex functions. The left side shows the
animated Julia set. Users can pan, zoom, and change their
viewpoint at any moment by dragging the mouse. The right
side holds a control panel. The control panel contains a panel
with playback functionality —such as play, pause, fast for-
ward, reset and animation speed— that is always visible. In
addition, there are a number of tabs that give access to the
more advanced functionality of the application. The main
tab contains sets of buttons that trigger presets for the type
of Julia set, coloring scheme, the animation style and tim-
ing, and additional visualization options. The user can ar-
bitrarily click on any of the buttons to explore the options
and always obtain nice results. The other tabs give direct
access to application parameters, such that everything can
be tweaked if desired. Examples of these parameters are the
values of n and c that define the Julia set; the colors used
and settings for the timing of the animation. Also, options
are provided to export images and image sequences. In the
following paragraphs we discuss various aspects that can be
controlled through the main tab of the user interface.

c© 2013 The Author(s)
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Figure 6: Results for a sequence of iterations. The blue and
green rings vanish quickly here.

Figure 7: Alternative color fill, which shows that equipoten-
tial lines remain perpendicular to field lines.

Julia sets. We hand-picked sixteen examples of interesting
Julia sets, and made these easily selectable via buttons. The
buttons show a miniature version of the end results. We var-
ied the complexity, starting with examples of quadratic Ju-
lia sets (first two rows), followed by examples with a larger
value for n.

Coloring. We also predefined a number of color schemes.
If we are solely interested in finding the filled Julia set, we
can start with a uniformly colored disk. However, using a
pattern for the disk reveals much clearer how one shape is
iteratively transformed into the next.

A simple but very effective color scheme is to use concen-
tric circles. As can be seen in many of the figures presented,
the duplication of the central red dot reveals how complex-
ity builds up and enables the viewer to trace the distortion.
Furthermore, concentric circles give insight in how close to
the origin points are trapped. For instance, in Figure 6 we
show the first 8 iterations for c = 0.2+ 0.55i. The blue and
cyan rings quickly become smaller to the point where they
are just barely visible, indicating that all points are trapped
in the inner three disks. This also implies that if we start with
a larger or different shape, e.g., a square with side length 4,
that this will result in the same Julia set, since the excess area
is compressed within a few iterations.

More insight can be gained by accentuating radial lines in
addition to concentric circles. This polar grid serves a similar

Figure 8: Coloring attractor and basins of attraction.

purpose as equipotential and field lines that are traditionally
used to show what happens on the exterior of the Julia set.
Figure 7 shows that perpendicular crossings remain perpen-
dicular, thereby visualizing that the mapping is conformal.

For most color maps, color patterns tend to repeat them-
selves. See for example Figure 6, where the center is first
red, then yellow for three iterations, after which the pattern
repeats itself. This is caused by a so called attractor: a set
of m points in the complex plane, specific to the choice for
c, to which the iteration sequence in Equation 2 converges.
Each point of the attractor has an associated basin of attrac-
tion, which in the end is colored uniformly. These basins are
cyclically visited, such that the colors for iterations j and
j +m are the same, while the iterations in between show a
cyclic permutation of the colors.

Based on this, we can emphasize the points of the attractor
in the starting image and use them to highlight the basins of
attractions. The attractor can be found using a simple algo-
rithm: start a forward iteration sequence, beginning with 0;
when a cycle is found, each point in the cycle is an element
of the attractor. We start from 0, because this point must be in
the basin of attraction, if there is one. It is a well known the-
orem that if there is an attractor, then its basin of attraction
must include a critical point, and here 0 is the only critical
point. We mark the points in the attractor initially with dif-
ferently colored small disks. Figure 8 shows the effect. In the
initial iterations, the shapes are cut open starting from these
disks, where the color permutes per iteration. During the an-
imations, the disks expand and distort, until finally only col-
ored areas remain. The Julia set shown stabilizes, but the
coloring and animation show that at each iteration the differ-
ent lobes cycle around their meeting points.

Animation style and timing. The next two rows of buttons

c© 2013 The Author(s)
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Figure 9: Animation timing styles. Per style the variation of
three parameters between 0 and 1 over time is shown.

enable the user to select an animation style, from left to right
Disk, Corkscrew, Fan, and Riemann; the two rows denote
different animation timing styles. The animations defined in
Section 3 expose several parameters that can be used to gen-
erate different animation styles. While parameters such as
the height of a corkscrew can easily be tweaked to a visually
optimal value, finding an optimal animation timing turned
out to be more involved. In the end, we found two differ-
ent schemes at extreme opposites to be most useful and of-
fer these as presets. The sequential scheme aims at show-
ing each step in the animation as clearly as possible. Only
one aspect (translation, splitting, exponentiation, merging) is
shown at a time, with a small pause in between. Besides giv-
ing insight in the different steps, this timing gives a rhythmic,
factory-like feeling. Also, we offer a parallel scheme, where
the different steps are combined into a perpetually moving
scene. The timelines of these schemes are given in Figure 9,
the effect on a cubic Julia set is shown in Figure 11.

Annotation. Besides the visualization of the Julia sets
themselves, we have implemented several visual annotations
to aid in understanding the math behind the animation, see
Figure 10. First of all, we have implemented a polar grid of
the complex plane. It helps to understand that the filled Ju-
lia set is a subset of the complex plane and it clarifies the
structure of the transformation. Additionally, we have added
markers for the coordinate axes, where red denotes the real
axis, green the imaginary axis, and blue the axis perpendic-
ular to the complex plane. Finally, we provide two markers
that denote the origin of the complex plane and the position
of c. It is between these two points that the shape is trans-
lated. Different combinations in increasing complexity can
be selected via the buttons in the bottom row.

4.2. Examples

JuliaInMotion was developed to give insight in the construc-
tion of Julia sets. Here we enumerate a number of insights
that can be obtained from the animations, and give some
more examples.

Figure 10: Visual annotation to aid in understanding the
math behind Julia sets.

Complexity. Our primary aim is to find a visual explana-
tion for the complexity of Julia sets. Standard images suggest
that the boundary is continuously deformed; our animations
give a better answer. Especially the disk animations clearly
reveal how Julia sets (i.e., the boundaries of filled Julia sets)
are constructed. In each iteration, the boundary is cut open,
n copies of the boundary are made, which are distorted, and
finally assembled head to tail to form the new boundary. Re-
peating this step gives a boundary with a quickly increasing
complexity.

Self-similarity and symmetry. This also explains the self-
similarity of Julia sets: Each new shape is constructed from
copies of one original shape, hence similar features and sub-
shapes emerge. Rotational symmetry comes from the fact
that all branches undergo the same transformation and are
rotated over different angles, such that an n-fold rotational
symmetry results.

The animations also show that the filled Julia set is a fixed
set under f (z), i.e., Kc = f (Kc). Figure 8 shows that after
a number of iterations the overall shape converges, and that
each new shape is the same after being split up, distorted,
and merged. However, the moving basins show that the inte-
rior is rearranged.

Attractors. We showed how the attractor and basins of at-
traction per point of the attractor can be visualized explic-
itly. Because we use inverse iteration, points of the attractor
appears as repellers. At each iteration step, the area around
c is slightly expanded until basins of attraction are formed.
The coloring helps to understand this process. In addition,
it shows that the number of symmetric lobes around meet-
ing points is equal to the length of the cycle of points of the
attractor.

Complex functions. Taking the square or higher order root
of a single complex number is understandable for most stu-
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Figure 11: Sequential (top) and parallel (bottom) animation timing styles, shown for one iteration of a cubic Julia set.

dents; understanding what happens to the complex plane is
much harder. Our animations show the root function in a
lively way, where a variety of styles can be used.

Higher exponents. For the understanding of the under-
lying principles of the construction of Julia sets, looking
at quadratic Julia sets is most illuminating. However, our
method generalizes to larger exponents and can also be
used to understand these more complex Julia sets. Figure 11
shows a cubic example, more examples can be found in the
accompanying video.

4.3. Feedback

We have demonstrated JuliaInMotion to six colleagues from
mathematics, with a varying age and experience, ranging
from a PhD student to an emeritus professor. Their ex-
perience included mathematics research, teaching complex
analysis, and external communication, particularly to high
school students.

We started our interviews by asking if they could explain
the reason for the complexity of Julia sets. We typically got
no answer to this, which convinced us that this is indeed an
open problem. We then showed various features of JuliaIn-
Motion, stepwise increasing the complexity. All our respon-
dents reacted very enthusiastically: they were intrigued by
the animations, but could quickly understand how they were
constructed and what they showed. Three of them took over
the mouse and started to experiment themselves. They saw a
variety of applications for JuliaInMotion: for master classes
of high school students; to explain fractals and complexity
to lay audiences; to generate intriguing movie-clips; but also
as an appetizer and educational aid for teaching complex
functions at university level. Some specific quotes: “Escher
was born too soon”, “I didn’t know that this was possible”
and “[JuliaInMotion] is several steps beyond any visualiza-
tion [of complex mappings] that I’ve seen”. We were de-
lighted by their enthusiasm. They also gave us good advice,

for instance to show the definition of the fractal textually on
screen, to make clear that there is solid math behind this.

In line with our expectations, our colleagues did not have
a strong preference for one of the animation styles. The disks
give a clean and compact view on the process, but using 3D
scenes was found to be more spectacular. The Corkscrew and
Fan are easier to understand than the Riemann surface, but
the latter is mathematically a better model, as it initially has
no branch cuts.

5. Conclusions

We have presented a method to visualize the construction of
Julia sets as a continuous process. The use of smooth an-
imations to show the iterative distortion of space strongly
helps to understand the generating process, and provides a
visual explanation for the complexity of Julia sets. We have
presented four different styles for visualizing complex root
functions; each with their own benefits. Furthermore, we
have presented JuliaInMotion, an interactive application that
enables a lay audience to play with and learn about Julia sets.
We think our work can be applied for presentation, com-
munication, and teaching purposes, and the first reactions of
prospective users strongly confirmed this.

Our current animation model and application can visual-
ize the construction of Julia sets for mappings of the form
f (z) = zn + c. This leads to the question which other map-
pings would lend themselves to our visualization method,
and how these can be visualized using a similar approach
as used here. An initially promising possibility seems the
Mandelbrot set, for which the mapping differs only slightly:
f (z) = z2 + z0, where z0 is the initial value of the considered
point in the complex plane. For forward iteration this is not
a problem as z0 is known from the first iteration onwards.
However, our Inverse Iteration Method approach works the
other way around, hence z0 is not available, and we have not
yet found out if this can be dealt with.
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