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Abstract

One of the central questions in game theory deals with predicting the behavior of an agent.
Here, we study the inverse of this problem: given the agents’ equilibrium behavior, what are
possible utilities that motivate this behavior? We consider this problem in arbitrary normal-
form games in which the utilities can be represented by a small number of parameters, such
as in graphical, congestion, and network design games. In all such settings, we show how
to efficiently, i.e. in polynomial time, determine utilities consistent with a given correlated
equilibrium. However, inferring both utilities and structural elements (e.g., the graph within
a graphical game) is in general NP-hard. From a theoretical perspective our results show
that rationalizing an equilibrium is computationally easier than computing it; from a practical
perspective a practitioner can use our algorithms to validate behavioral models.

1 Introduction

One of the central and earliest questions in game theory deals with predicting the behavior of an
agent. This question has led to the development of a wide range of theories and solution concepts
—such as the Nash equilibrium— which determine the players’ actions from their utilities. These
predictions in turn may be used to inform economic analysis, improve artificial intelligence software,
and construct theories of human behavior.

Perhaps equally intriguing is the inverse of the above question: given data of the observed
behavior of players in a game, how can we infer the utilities that led to this behavior? Surprisingly,
this question has received much less attention, even though it arises just as naturally as its more
famous converse.

For instance, inferring or rationalizing player utilities ought to be an important part of experi-
mental protocols in the social sciences. An experimentalist should test the validity of their model by
verifying whether it admits any utilities that are consistent with observed data. More ambitiously,
the experimentalist may wish to develop predictive techniques, in which one tries to forecast the
agents’ behavior from earlier observations, with utilities serving as an intermediary in this process.

Inferring utilities also has numerous engineering applications. In economics, one could design
mechanisms that adapt their rules after learning the utilities of their users, in order for instance to
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maximize profits. In machine learning, algorithms that infer utilities in a single-agent reinforcement
learning setting are key tools for developing helicopter autopilots, and there exists ongoing research
on related algorithms in the multi-agent setting.

1.1 Our Contributions.

Previous work on computational considerations for rationalizing equilibria has only considered
specific settings, such as matching [15] and network formation games [14]. Here, we instead take
a top-down approach and consider the problem in an arbitrary normal-form game. Although our
results hold generally, the problem becomes especially interesting when the normal-form game is
succinct, meaning that player utilities can be represented by a small number of parameters. The
number of outcomes in an arbitrary game is in the worst case exponential in the number of players,
so even storing the utilities would already require a prohibitive amount of storage. However, many
games have additional structure which allows the utilities to be succinctly represented. Indeed,
most games studied in the literature —including congestion, graphical, scheduling, and network
design games— have this property. Within all succinct games, we establish two main results:

• When the structure of a game (e.g. the graph in a graphical game) is known, we can find
utilities that rationalize the equilibrium using a small LP. The LP is polynomial rather than
exponential in the number of players and their actions, and hence can be solved in polynomial
time using the ellipsoid method. We discuss these results in Section 4.

• If the structure of a succinct game is unknown, inferring both utilities and the correct game
structure is NP-hard. We discuss these results in Section 5.

1.2 Related Work

Theoretical Computer Science. Kalyanaraman et al. studied the computational complexity of
rationalizing stable matchings [15], and network formation [14]. In the latter case, they showed that
game attributes that are local to a player can be rationalized, while other, more global, attributes
cannot; this mirrors our observations on the hardness of inferring utilities versus inferring game
structure. The forward direction of our problem — computing an equilibrium from utilities — is
a central question within algorithmic game theory. Computing Nash equilibria is intractable [9]
even for 2 player games [7] (and therefore may be a bad description of human behavior); correlated
equilibria, however, are easy to compute in succinct games [20] and can be found using simple
iterative dynamics [10, 12]. Our results show that while a Nash equilibrium is hard to compute, it
is easy to rationalize. For correlated equilibria, both computing and rationalizing it are feasible.

Economics. Literature on rationalizing agent behavior [22, 2, 23] far predates computational
concerns. The field of revealed preference [24] studies an agent who buys different bundles of
a good over time, thus revealing more information about its utilities. These are characterized
by sets of linear inequalities, which become progressively more restrictive; we adopt this way of
characterizing agent utilities in our work as well, but in addition we prove that solving the problem
can be done in polynomial time.

Econometrics. Recently, Nekipelov et al. [18] discussed inferring utilities of bidders in online ad
auctions, assuming bidders are using a no-regret algorithm for bidding. While no-regret learning
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agents do converge to a correlated equilibrium, the authors discuss a private-information game,
rather than the full information games we consider.

The identification problem in econometrics includes formulations for games, e.g. [6, 17, 5], but
their goal is to find a single set of utilities that best describes observed behavior. Since this is often
computationally infeasible, much of the literature proposes different estimators. From a theoretical
perspective,for the class of succinct games we show that finding a set (not necessarily the most
likely) of utilities is computationally feasible. Additionally from a practical perspective, we uncover
the entire space of valid utilities, which can be used to indicate how confident we should be about
assumptions on a model.

Inverse Reinforcement Learning. Algorithms that infer the payoff function of an agent within
a Markov decision process [19] are a key tool in building helicopter autopilots [1]. Our work
establishes an analogous theory for multi-agent settings. Inverse reinforcement learning has also
been used to successfully predict driver behavior in a city [25, 26]; but this work does not learn the
utilities of players directly.

Inverse Optimization. Game theory can be interpreted as multi-player optimization, with dif-
ferent agents maximizing their individual objective functions. Recovering the objective function
from a solution of a linear program can be solved using a different linear program [3]. Our work
considers the analogous inverse problem for multiple players and also solves it using an LP.

2 Preliminaries

In a normal-form game G , [(Ai)
n
i=1, (ui)

n
i=1], a player i ∈ {1, 2, ..., n} has mi actions Ai ,

{ai1, ai2, ..., aimi
} and utilities ui ∈ Rm, where m =

∏n
i=1mi is the cardinality of the joint-action

space A , ×n
i=1Ai. An a ∈ A is called a joint action of all the players and let a−i be a with the

action of player i removed. A mixed strategy of player i is a probability distribution pi ∈ Rmi over
the set of actions Ai. A correlated equilibrium (CE) of G is a probability distribution p ∈ Rm over
A that satisfies ∑

a−i

p(aij ,a−i)u(aij ,a−i) ≥
∑
a−i

p(aij ,a−i)u(aik,a−i) (1)

for each player i and each pair of actions aij , a
i
k. This equation captures the idea that no player

wants to unilaterally deviate from their equilibrium strategy. Correlated equilibria exist in every
game, are easy to compute using a linear program, and arise naturally from the repeated play of
learning players [10, 12].

A (mixed) Nash equilibrium is a correlated equilibrium p that is a product distribution p(a) =
p1(a1)× ...× pn(an), where the pi ∈ Rmi are mixed player strategies. In a Nash equilibrium, each
player chooses their own strategy (hence the product form), while in a correlated equilibrium the
players’ actions can be viewed as coming from an outside mediator. A Nash equilibrium exists in
every game, but is hard to compute even in the 2-player setting [7].

3 Succinct Games

In general, the dimension m of player i’s utility ui is exponential in the number of players: if each
player has t actions, ui specifies a value for each of their tn possible combinations. Therefore,
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we restrict our attention to games G that have a special structure which allows the ui to be
parametrized by a small number of parameters v; such games are called succinct [20].

A classical example of a succinct game is a graphical game, in which there is a graph H with a
node for every player, and the utility of a player depends only on itself and the players on incident
nodes in H. Let k be the number of neighbors of i in H, then we only need to specify the utility
of i for each combination of actions of k + 1 players (rather than n). For bounded-degree graphs
this greatly reduces the number of parameter value. If the maximum degree in the graph is k and
each player has at most t actions, then the total number of utility values per player is at most tk+1,
which is independent of n.

Definition 3.1. A succinct game

G , [(Ai)
n
i=1, (vi)

n
i=1, (Fi)

n
i=1]

is a tuple of sets of player actions Ai, parameters vi ∈ Rd, and functions Fi : Rd × A → R that
compute the utility ui(a) = Fi(vi,a) of a joint action a.

We will further restrict our attention to succinct games in which the Fi have a particular linear
form. As we will soon show, almost every succinct game in the literature is also linear. This
definition will in turn enable a simple and unified mathematical analysis across all succinct games.

Definition 3.2. A linear succinct game

G , [(Ai)
n
i=1, (vi)

n
i=1, (Oi)

n
i=1]

is a succinct game in which the utilities ui are specified by ui = Oivi, where Oi ∈ {0, 1}m×d is an
outcome matrix mapping parameters into utilities.

Note that a linear succinct game is a special case of Definition 3.1 with Fi(vi,a) = (Oivi)a,
which is the component of Oiv corresponding to a.

The outcome matrix Oi has an intuitive interpretation. We can think of a set of d distinct
outcomes Oi that can affect the utility of player i. The parameters vi specify a utility vi(o) for
each outcome o ∈ Oi. When a joint action a occurs, it results in the realization of a subset
Oi(a) , {o : (Oi)a,o = 1} of the outcomes, specified by the positions of the non-zero entries of
matrix Oi. The utility ui(a) = (Oivi)a equals the sum of valuations of the realized outcomes:

ui(a) =
∑

o∈Oi(a)

vi(o).

Graphical games, which we discussed above, are an example of a succinct game that is linear.
In a graphical game with an associated graph H, outcomes correspond to joint actions aN(i) =

(a(k))k∈N(i) by i and its neighbors in H. A joint-action a activates the single outcome o that is
associated to a aN(i) in which the actions are specified by a. The matrix Oi is defined as

(Oi)a,aN(i)
=

{
1 if a,aN(i) agree on the actions of N(i)

0 otherwise.
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3.1 Succinct Representations of Equilibria

Since there is an exponential number of joint actions, a correlated equilibrium p (which is a dis-
tribution over joint actions) may require exponential space to write down. To make sure that the
input is polynomial in n, we require that p be represented as a polynomial mixture of product
distributions (PMP) p =

∑K
k=1 qk, where K is polynomial in n, qk(a) =

∏n
i=1 qik(ai) and qik is a

distribution over Ai. Correlated equilibria in the form of a PMP exist in every game and can be
computed efficiently [20]. A Nash equilibrium is already a product distribution, so it is a PMP with
K = 1.

3.2 What it Means to Rationalize Equilibria

Finding utilities consistent with an equilibrium p amounts to finding ui that satisfy Equation 1 for
each player i and for each pair of actions aij , a

i
k ∈ Ai. It is not hard to show that Equation 1 can

be written in matrix form as
pTCijkui ≥ 0, (2)

where Cijk is an m×m matrix that has the form

(Cijk)(arow,acol) =


−1 if arow = (aj ,a

col
−i )

1 if arow = (ak,a
col
−i )

0 otherwise.

This formulation exposes intriguing symmetry between the equilibrium distribution p and the
utilities ui. By our earlier definitions, the utilities ui in a linear succinct game can be written as
ui = Oivi; this allows us to rewrite Equation 2 as

pTCijkOivi ≥ 0. (3)

While Cijk and Oi are exponentially large in n, their product is not, so in Section 4 we show that
we can compute this product efficiently, without constructing Cijk and Oi explicitly.

3.3 Non-Degeneracy Conditions

In general, inferring agent utilities is not a well-defined problem. For instance, Equation 1 is always
satisfied by vi = 0 and remains invariant under scalar multiplication αvi. To avoid such trivial
solutions, we add an additional non-degeneracy condition on the utilities.

Condition 1 (Non-degeneracy). A non-degenerate vector v ∈ Rd satisfies
∑d

k=1 vk = 1.

3.4 The Inverse Game Theory Problem

We are now ready to formalize two important inverse game theory problems. In the first problem —
Inverse-Utility — we observe L games between n players; the structure of every game is known,
but can vary. As a motivating example, consider n drivers that play a congestion game each day
over a network of roads and on certain days some roads may be closed. Or consider L scheduling
games where different subsets of machines are available on each day. Our goal is to find valuations
that rationalize the observed equilibrium of each game.

5



Definition 3.3 (Inverse-Utility problem). Given:

1. A set of L partially observed succinct n-player games
Gl = [(Ail)

n
i=1, · , (Oil)

n
i=1], for l ∈ {1, 2, ..., L}.

2. A set of L correlated equilibria (pl)
L
l=1.

Determine succinct utilities (vi)
n
i=1 such that pl is a valid correlated equilibrium in each Gl, in the

sense that Equation 3 holds for all i and for all aij , a
i
k ∈ Ail. Alternatively, report that no such vi

exist.

In the second problem — Inverse-Game — the players are again playing in L games, but this
time both the utilities and the structure of these games are unknown.

Definition 3.4 (Inverse-game problem). Given:

1. A set of L partially observed succinct n-player games Gl = [(Ail)
n
i=1, · , · ], for l ∈ {1, 2, ..., L}.

2. A set of L correlated equilibria (pl)
m
l=1.

3. Candidate game structures (Sl)Ll=1, one Sl per game. Each Sl = (Slh)ph=1 contains p candidate
structures. A structure Slh = (Olhi)

n
i=1 specifies an outcome matrix Olhi for each player i.

Determine succinct utilities (vi)
n
i=1 and a structure S∗l = (O∗li)

n
i=1 ∈ Sl for each game, such that pl

is a correlated equilibrium in each [(Ail)
n
i=1, (vi)

n
i=1, (O

∗
li)

n
i=1], in the sense that

pT
l CijkO

∗
ilvi ≥ 0

holds for all i, l and for all aij , a
i
k ∈ Ail. Alternatively, report that no such vi exist.

An example of this problem is when we observe L graphical games among n players and each
game has a different and unknown underlying graph chosen among a set of candidates. We wish to
infer both the common v and the graph of each game.

4 Learning Utilities in Succinct Games

In this section, we show how to solve Inverse-Utility in most succinct games. We start by looking
at a general linear succinct game, and derive a simple condition under which Inverse-Utility can
be solved. Then we consider specific cases of games (e.g. graphical, congestion, network games),
and show 1) that they are succinct and linear, and 2) that they satisfy the previous condition.

4.1 General Linear Succinct Games

To solve Inverse-Utility, we need to find valuations vi that satisfy the equilibrium condition
(3) for every player i and every pair of actions aij , a

i
k. Notice that if we can compute the product

cTijk , pTCijkOi, then Equation 3 reduces to a simple linear constraint cTijkvi ≤ 0 for vi. However,
the dimensions of Cijk and Oi grow exponentially with n; in order to multiply these objects we
must therefore exploit special problem structure. This structure exists in every game for which the
following simple condition holds.
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Property 1. Let Ai(o) = {a : (Oi)a,o = 1} be the set of joint-actions that trigger outcome o for
player i. The equilibrium summation property holds if∑

a−i:(ai
j ,a−i)∈Ai(o)

p(a−i) (4)

can be computed in polynomial time for any outcome o, product distribution p, and action aij.1

Lemma 4.1. Let G be a linear succinct game and let p be a PMP correlated equilibrium. Let
cTijk , pTCijkOi be the constraint on vector vi in Equation 3 for a pair of actions aik, a

i
j. If

Property 1 holds, then the components of cTijkj can be computed in polynomial time.

Proof. For greater clarity, we start with the formulation (1) of constraint (3):∑
a−i

p(aij ,a−i)u(aij ,a−i) ≥
∑
a−i

p(aij ,a−i)u(aik,a−i) (5)

We derive from (5) an expression for each component of cijk.
Recall that we associate the components of vi with a set of outcomes Oi. Let Oi(a) = {o :

O(a,o} = 1} denote the set of outcomes that are triggered by a; similarly, let A(o) = {a : (Oi)a,o = 1}
be the set of joint-actions that trigger an outcome o. The left-hand side of (5) can be rewritten as:∑

a-i

p(aij ,a-i)ui(a
i
j ,a-i) =

∑
a-i

p(aij ,a-i)
∑

o∈Oi(ai
j ,a-i)

vi(o)

=
∑
o∈Oi

∑
a-i:

(ai
j ,a-i)∈Ai(o)

p(aij ,a-i)vi(o)

=
∑
o∈Oi

vi(o)
∑
a-i:

(ai
j ,a-i)∈Ai(o)

p(aij ,a-i)

Similarly, the right-hand side of (5) can be rewritten as∑
a-i

p(aij ,a-i)ui(a
i
k,a-i) =

∑
o∈Oi

vi(o)
∑
a-i:

(ai
k,a-i)∈Ai(o)

p(aij ,a-i).

Substituting these two expressions into (5) and factoring out pi(a
i
j) (recall that p is a product

distribution) allows us to rewrite (5) as:

∑
o∈Oi

vi(o)

 ∑
a-i:

(ai
j ,a-i)∈Ai(o)

p(a-i)−
∑
a-i:

(ai
k,a-i)∈Ai(o)

p(a-i)

 ≥ 0.

1Property 1 is closely related to the polynomial expectation property (PEP) of [20] which states that the expected
utility of a player in a succinct game should be efficiently computable for a product distribution. In fact, the
arguments we will use to show that this property holds are inspired by arguments for establishing the PEP.
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Notice that the expression in brackets corresponds to the entries of the vector cTijk. If p is a
product distribution, then by Property 1, we can compute these terms in polynomial time. If p is
a correlated equilibrium with a PMP representation

∑K
k=1 qk, it is easy to see that by linearity of

summation we can apply Property 1 K times on each of the terms qk and sum the results. This
establishes the lemma.

Lemma 4.1 suggests solving Inverse-utility in a game G by means of the following optimiza-
tion problem.

minimize

n∑
i=1

f(vi) (6)

subject to cTijkvi ≥ 0 ∀i, j, k (7)

1Tvi = 1 ∀i (8)

Constraint (7) ensures that p is a valid equilibrium; by Lemma 4.1, we can compute the components
of cijk if Property 1 holds in G. Constaint (8) ensures that the vi are non-degenerate. The objective
function (6) selects a set of vi out of the polytope of all valid utilities. It is possible to incorporate
into this program additional prior knowledge on the form of the utilities or on the coupling of
valuations across players.

The objective function f may also incorporate prior knowledge, or it can serve as a regularizer.
For instance, we may choose f(vi) = ||vi||1 to encourage sparsity and make the vi more inter-
pretable. We may also use f to avoid degenerate vi’s; for instance, in graphical games, cTijk1 = 0
and constant vi’s are a valid solution. We may avoid this by adding the v ≥ 0 constraint (this is
w.l.o.g. when cTijk1 = 0) and by choosing f(v) =

∑
o∈Oi

v(o) log v(o) to maximize entropy.
Note that to simply find a valid vi, we may set f(vi) = 0 and find a feasible point via linear

programming. Moreover, if we observe L games, we simply combine the constraints cijk into one
program. Formally, this establishes the main lemma of this section:

Lemma 4.2. The Inverse-game problem can be solved efficiently in any game where Property 1
holds.

4.2 Inferring Utilities in Popular Succinct Sames

We now turn our attention to specific families of succinct games which represent the majority of
succinct games in the literature [20]. We show that these games are linear and satisfy Property 1;
so that, Inverse-Utility can be solved using the optimization problem (6).

Graphical Games. In graphical games [16], a graph H is defined over the set of players; the
utility of a player depends only on their actions and those of its neighbors in the graph.

The outcomes for player i are associated to joint-actions aN(i) by the set containing i and its
neighbors N(i). A joint-action a triggers the outcome aN(i) specified by actions of the players in
N(i) in a. Formally,

(Oi)a,aN(i)
=

{
1 if a,aN(i) agree on the actions of N(i)

0 otherwise.
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It is easy to verify that graphical games possess Property 1. Indeed, for any outcome o = aN(i) and

action aij , and letting akN(i) be the action of player k in aN(i), we have∑
a-i:

(ai
j ,a-i)∈Ai(o)

p(a-i) =
∏

k∈N(i)
k 6=i

pk(akN(i))
∏

k/∈N(i)
k 6=i

∑
∈Ak

pk(ak)

=
∏

k∈N(i)
k 6=i

pk(akN(i))

Polymatrix Games. In a polymatrix game [13], each player plays i in (n − 1) simultaneous
2-player games against each of the other players, and utilities are summed across all these games.
Formally, each joint-action triggers n−1 different outcomes for player i, one for each pair of actions
(ai, aj) and thus ui(a) =

∑
j 6=i vi(a

i, aj). The associated outcome matrix is

(Oi)a,(ai,aj) =

{
1 if aij and aii are played within a

0 otherwise.

To establish Property 1, observe that when o = (ai, aj) is one of the outcomes affecting the utility
of player i, we have ∑

a-i:
(ai

j ,a-i)∈Ai(o)

p(a-i) =
∑

a-i:aj∈a-i

p(a-i) = pj(a
j).

Hypergraphical Games. Hypergraphical games [20] generalize polymatrix games to the case
where the simultaneous games involve potentially more than two players. Each instance of a
hypergaphical game is associated with a hypergraph H; the vertices of H correspond to players and
a hyperedge e indicates that the players connected by e play together in a subgame; the utility of
player i is the sum its utilities in all the subgames in which it participates.

The fact that hypergraphical games are linear and possess Property 1 follows easily from our
discussion of polymatrix and graphical games.

Congestion Games. In congestion games [21], players compete for a set of resources E (e.g.,
roads in a city, modeled by edges in a graph); the players’ actions correspond to subsets ai ⊆ E of
the resources. After all actions have been played, each player i incurs a cost that equals the sum∑

e∈ai de(le) of delays de(`e) at each resource e, where `e(a) = |{i : e ∈ ai}| denotes the number
of players using that resource. In the example involving roads, delays indicate how long it takes to
traverse a road based on the congestion.

The outcomes for player i in congestion games are associated with a resource e and the number L
of players using that resource; we denote this by o = (e, L). A joint action a activates the outcomes
for the resources in ai that have `e(a) users. The value v(o) of an outcome o = (e, L) corresponds
to the delay experienced on e. Formally, the outcome matrix for a congestion game has the form

(Oi)a,(e,L) =

{
1 if e ∈ ai and `e(a) = L

0 otherwise.
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To establish Property 1, we need to show that the expression∑
a-i:

(ai
j ,a-i)∈Ai(o)

p(a-i) =
∑

a−i:`(a−i)=L−1{e∈ai
j}

p(a−i)

can be computed for any outcome o = (e, L). Here, `(a−i) denotes the number of players other
than i using resource e and 1{e ∈ aij} equals one if e ∈ aij and zero otherwise.

The expression PL(e) ,
∑

a−i:`(a−i)=L p(a−i) can be computed via dynamic programming.

Indeed, observe that PL(e) equals P [
∑

j 6=iBj(p, e) = L], where Bj(p, e) is a Bernoulli random

variable whose probability of being one corresponds to the probability Pj,e ,
∑

aj :e∈aj pj(a
j) of

player j selecting an action that includes e. The probabilities Pj,e are of course easy to compute.
From the Pj,e it is easy to compute the PL(e) using dynamic programming via the recursion:

PL(e) =
∑
j 6=i

P [Bj(p, e) = 1 ∩Bk(p, e) = 0 ∀k 6= i, j]PL−1(e).

Facility Location and Network Design Games. In facility location games [8], players choose
one of multiple facility locations, each with a certain cost, and the cost of each facility is then
divided by all the players who build it. In network design games [4], players choose paths in a
graph to connect their terminals, and the cost of each edge is shared among the players that use it.

These two game types are special cases of congestion games with particular delay functions.
These can be handled through additional linear constraints. The earlier discussion for congestion
games extends easily to this setting to establish Property 1.

Scheduling Games. In a scheduling game [11, 20], there are M machines and each player i
schedules a job on a machine ai; the job has a machine-dependent running time t(m, i). The player
then incurs a cost ti(a) =

∑
{j:aj=ai} t(a

i, j) that equals the sum of the running times of all tasks
on its machine.

Player outcomes o = (m, j) are associated with a machine m and the task of a player j. The
outcome matrix Oi has the form

(Oi)a,(m,j) =

{
1 if m ∈ ai and m ∈ aj

0 otherwise.

Property 1 can be established by adapting the dynamic programing argument used for congestion
games. Note also that congestion games require adding the constraint vi(m, k) = vj(m, k) for all i
and j in optimization problem (6). We summarize our results in the following theorem.

Theorem 4.3. The Inverse-Utility problem can be solved in polynomial time for the classes of
succinct games defined above.

5 Learning the Structure of Succinct Games

Unlike the Inverse-Utility problem, for which we have sweeping positive results, the Inverse-
game problem is generally hard to solve. We show this under the following non-degeneracy condi-
tion for player utilities.
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Condition 2 (Non-indifference). There exist aij , a
i
k,a−i such that ui(a

i
j ,a−i) 6= ui(a

i
k,a−i), where

ui = Oivi.

Theorem 5.1. Under Condition 2, it is NP-Hard to solve Inverse-game for graphical games,
while the corresponding instance of Inverse-utility is easy to solve.

Proof. We reduce from an instance of 3-sat in which for every variable appears in at most m− 2
clauses.2 Given an instance of 3-sat with m clauses and n variables, we construct an instance of
Inverse-game as follows.

There are n+ 1 players in each game j (for 1 ≤ j ≤ m) that are indexed by i = 0, .., n. Player

0 has only one action: a(0). Every other player i ≥ 1 has 2 actions: a
(i)
T and a

(i)
F .

Every game j is associated with a clause Cj . Game j has an unknown underlying graph that is
chosen in the set of graphs Sj = {Hj1, Hj2, Hj3}, where Hjk is the graph consisting of only a single
edge between player 0 and the player associated with the variable that appears as the k-th literal
in clause j. In other words, in each game, only one of three possible players is connected to player
0 by an edge.

The utilities vi of each player i ≥ 1 are four-dimensional: they specify two values vi(a
(i)
T ), vi(a

(i)
F )

when player i is not connected by an edge to player 0, and two values vi(a
(i)
T ; a(0)), vi(a

(i)
F ; a(0)) when

they are.
For every clause Cj , we also define an input equilibrium pj . Each pj is a pure strategy Nash

equilibrium and decomposes into a product pj =
∏n

i=1 pji. Since player 0 has only one action, pj0
is defined trivially. When variable xi appears in clause Cj , we define the probability of player i ≥ 1

playing action a
(i)
T as

pji

(
a(i) = a

(i)
T

)
=

{
1 if xi is positively in clause Cj

0 if xi is negated in clause Cj ,

and pji(a
(i) = a

(i)
F ) = 1 − pji(a(i) = a

(i)
T ). When variable xi does not appear in clause Cj , we set

the strategy in one such game j (chosen arbitrarily) to be pji(a
(i) = a

(i)
T ) = 1, and in the remaining

games we set pji(a
(i) = a

(i)
F ) = 1.

This completes the construction of the game. Next, we will introduce some notation and make
a few observations, before showing that 3-sat is encoded in the constructed game.

Let ∆i(a
(i)
T → a

(i)
F ) , vi(a

(i)
F , a(0))− vi(a(i)T , a(0)) be the gain to player i ≥ 1 for deviating from

a
(i)
T to a

(i)
F when they are not connected to player 0, and let ∆i(a

(i)
T → a

(i)
F ; a(0)) , vi(a

(i)
F , a(0); a(0))−

vi(a
(i)
T , a(0); a(0)) be the gain when they are.
Observe that the constraint of player i ≥ 1 when they are not connected to player 0 is of the

form
pij(a

(i)
F )∆i(a

(i)
T → a

(i)
F ) + pij(a

(i)
T )∆i(a

(i)
F → a

(i)
T ) ≥ 0,

and the constraint when i and 0 are connected is similar.
Because each variable xi appear in at most m − 2 clauses, and because of how we defined the

probabilities, the following constraints act on ∆i(a
(i)
T → a

(i)
F ): in one game j1 such that xi is not in

Cj we have ∆i(a
(i)
T → a

(i)
F ) ≥ 0, and in all other such games we have ∆i(a

(i)
T → a

(i)
F ) ≤ 0. Because by

2This is without loss of generality: if there is a variable that appears in all clauses, we can construct two 2-sat
instances which can be solve efficiently, if a variable appears in all but one clause we can duplicate that clause.
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definition ∆i(a
(i)
T → a

(i)
F ) = −∆i(a

(i)
F → a

(i)
T ), we must have ∆i(a

(i)
T → a

(i)
F ) = ∆i(a

(i)
F → a

(i)
T ) = 0.

Because of non-degeneracy constraints on the utilities v, this implies that ∆i(a
(i)
F → a

(i)
T ; a(0)) 6= 0.

This concludes the observations.
We now show how 3-sat is encoded in the game we defined. Suppose that we have an valid

assignment of utilities and a structure; this leads to a satisfying assignment in 3-sat: we simply set
to be true in clause j the literal associated with the player that is connected to player 0 in game j.

Clearly there will be one true literal per clause. We only need to show that both the literal and
its negation are never chosen. Suppose that was the case and there were two clauses j1, j2 such that

xi is chosen in j1 and x̄i is chosen in j2. Then, player i’s constraint in j1 is ∆i(a
(i)
T → a

(i)
F ; a(0)) > 0

and in j2 it is ∆i(a
(i)
F → a

(i)
T ; a(0)) = −∆i(a

(i)
T → a

(i)
F ; a(0)) > 0 and there cannot be utilities that

satisfy both these constraints.
Finally we show that a satisfying 3-sat assignment leads to valid utilities in Inverse-game.

First, set all utilities vi(a
(i)
T ), vi(a

(i)
F ) to zero. Set the utility of player 0 to one. Pick a true literal

in each clause j and connect the corresponding player in game j to player 0. We have to show that
we can find valid utilities for all players. Clearly, that is feasible for player 0. We claim that it is

also possible for any player i ≥ 1. First, set ∆i(a
(i)
T → a

(i)
F ) = −∆i(a

(i)
F → a

(i)
T ) = 0. Next, notice if

xi is true, then all constraints involving player i are ∆i(a
(i)
T → a

(i)
F ; a(0)) > 0), and if xi is false, all

constraints involving player i are ∆i(a
(i)
F → a

(i)
T ; a(0)) > 0. In both cases we can find valid utilities

to satisfy these constraints, and so Inverse-game can be solved.
Finally, observe that the corresponding instance of Inverse-utility (i.e., the one in which the

correct graph is pre-specified in advance) is easy to solve. The number of players and actions is
very small. Furthermore, it is easy to enforce Condition 2, as there are only two actions for each
player, and two values of ai−i to consider; the condition can thus be enforced by adding a small
(polynomial) number of constraints to the problem.
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