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Abstract—The Delaunay triangulation of n points in the plane
can be constructed in o(n logn) time when the coordinates of the
points are integers from a restricted range. However, algorithms
that are known to achieve such running times had not been
implemented so far. We explore ways to obtain a practical
algorithm for Delaunay triangulations in the plane that runs in
linear time for small integers. For this, we first implement and
evaluate two variants of BrioDC, an algorithm that is known to
achieve this bound. We implement the first O(n)-time algorithm
for constructing Delaunay triangulations and found that our
implementations are practical. While we do not improve upon fast
existing algorithms (with non-optimal worst-case running time)
for realistic data sets, our BrioDC implementations do give us
insight into the optimal time needed for point location. Secondly,
we implement and evaluate variants of BRIO, an algorithm which
has an O(n logn) worst-case running time on small integers but
runs faster for many distributions. Our variants aim to avoid bad
worst-case behavior, which is due to high point location time. Our
BrioDC implementation shows that point location time can be
reduced by 25% and our squarified space-filling curve orders
show the first improvement by reducing this by 3%.

I. INTRODUCTION

The Delaunay triangulation (DT) of a point set P in the
plane is a triangulation of P such that no point p ∈ P lies
inside the circumcircle of any triangle. In general, constructing
the Delaunay triangulation of n points in the plane takes
Ω(n log n) time. This bound holds if we assume that the
coordinates of the points are arbitrary real numbers. However,
in the word RAM model of computation, that is, if we assume
that the coordinates of the points are integers from a restricted
range [0, U) this bound no longer holds. Nonetheless, for a
long time no algorithms that beat this bound were known.
The breakthrough came in 2006, when Chan and Pǎtraşcu [9]
presented an algorithm running in O(n log n/ log log n) time.
In a follow-up paper [10] they improved this bound to
n2O(

√
log logn). The best asymptotic running time to hope

for is the time for sorting integers in the range [0, U). A
randomized and a deterministic algorithm achieving this in
a suitable model were given by Buchin and Mulzer [6] and
Löffler and Mulzer [19], respectively.

For small integers the latter two algorithms run in linear
time, since we can sort integers with U = nO(1) in this time
using radix sort. Integer sorting algorithms like radix sort are
not only fast in theory, but also run fast in experiments (see

for example [17]). In contrast, o(n log n)-time algorithms for
Delaunay triangulations have been only of theoretical interest
so far and none of them had been implemented. The goal of
our work is to explore ways to obtain a practical algorithm for
Delaunay triangulations in the plane that runs in linear time
for small integers. Our approach to this is two-fold. First, we
implement and evaluate fast variants BrioDC [6], which has
the same asymptotic running time as sorting. Secondly, we
implement and evaluate variants of incremental constructions
con BRIO [2], where BRIO stands for biased randomized
insertion order.

Incremental constructions con BRIO (when used without
point-location data structure) also seem suited for points
with small integer coordinates, because their worst-case ex-
pected running time is in O(n logU) [5]1 (in contrast to the
O(n logU

logn ) running time of BrioDC). The variants we have
implemented aim to avoid typical reasons for bad worst-case
behavior. For real-valued coordinates the worst-case running
time of incremental constructions con BRIO is quadratic but
can be reduced to O(n log n) by the use of a point location
data structure [2]2. There are various implementations of
variants of this algorithm [2], [4], [11], [16], [18], [27]. Most
of these variants do not use an additional point location
data structure and most sort the points of a round along a
space-filling curve (SFC) like the Hilbert or Peano curve (see
Figure 1).

1In [5] this bound is formulated in terms of the spread of the point set.
2They prove a corresponding result in 3D, but their analysis can be extended

to two-dimensional Delaunay triangulations (and other configuration spaces)
as shown in [4].
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Fig. 1. Traditional space-filling curves.



In experiments these variants mostly seem to run in linear
time, but unfortunately there are point sets for which the
O(n logU)-bound is tight [5]. Therefore, if we want an
algorithm with a better worst-case performance, we need to
choose the insertion order differently.

One weakness of orders based on space-filling curves seems
to be that the construction process does not adapt to the point
distribution. In contrast, the CGAL Hilbert curve order [11]
does3. However, this order is likely to introduce large jumps,
i.e., large distances between consecutive points in the order.
We propose several new orders that overcome this problem and
still adapt well to the point distribution. For comparison we
also implemented various traditional space-filling curve orders.

The algorithm by Buchin and Mulzer [6] propose an ex-
tension of BRIOs that uses nearest neighbor graphs (NNGs).
We implement their algorithm. A large part of the running
time is spent on the worst-case optimal nearest-neighbor graph
construction, and we therefore implement another variant of
this algorithm which uses several steps that are non-optimal
but simpler. In our experiments the running time of both
variants is similar.

II. ALGORITHMS

We implemented both the BRIO and BrioDC algorithms4.
For each we give a short overview and discuss variations and
implementation details.

A. BRIO

The difference between a regular random incremental con-
struction (RIC) algorithm and BRIO [2], is that with BRIO
the points are inserted in log2 n rounds. First, points are added
to the final round with independent probability 1/2. Then the
remaining points are added with probability 1/2 to the second-
to-last round and this process continues until we reach the first
round and all remaining points are added. Within a round the
insertion order can be chosen freely, and often a space-filling
curve order is used. By sorting points in this way, the next
point to be inserted is likely to be close to the previous point.

1) Existing Space-Filling Curves: There is a plethora of
space-filling curves available in the literature; we have imple-
mented the following to use with BRIO.

a) Hilbert: Perhaps the most widely known curve is the
Hilbert curve [15] (Figure 1a). It subdivides the square into
four smaller squares and visits them in cyclic order. In the
recursive step, the cyclic order may start at a different square
and go in a different direction.

b) Peano: The Peano curve [21] subdivides the square
into a 3× 3 grid and roughly follows the pattern of the letter
N (Figure 1b). Each subregion follows a similar order, except
possibly reflected along the Y-axis.

3CGAL now also provides a regular Hilbert curve order.
4Source code available from http://www.win.tue.nl/∼kbuchin/proj/wramdt/.

(a) CGAL (b) Adaptive (c) HilbertYX

Fig. 2. Existing variants of the Hilbert curve.

(a) Wide squarified (b) Tall squarified

Fig. 3. Squarified Hilbert curve.

c) Sierpiński: Unlike curves that are based on subdivid-
ing squares into smaller squares, the Sierpiński curve [25]
subdivides triangles into smaller triangles (Figure 1c). It starts
by subdividing the initial square into two triangles along a
diagonal, and from then on only works with triangles.

d) CGAL Hilbert: CGAL [11] provides an space-filling
curve that is similar to the Hilbert order, but instead of dividing
the space into equally sized subspaces, it divides the point set
into equally sized subsets. It first creates a vertical split on
the horizontal median, and then for each half a horizontal
split on their vertical medians. The quadrants are handled
in Hilbert order, see Figure 2a. If the two vertical medians
differ substantially, the jump from the upper left to upper right
quadrant can be large.

2) New space-filling curves: We propose several new
space-filling curves that aim at providing a good mapping be-
tween 1-dimensional and d-dimensional space, i.e., no jumps
should occur and the summed distance between consecutive
points in the order should be small. The running time is related
to the depth of recursion [5]. To reduce the depth, our methods
aim at providing balanced splits and using tighter bounding
boxes. A more detailed description of the new space-filling
curves is given in [26].

a) Adaptive Hilbert order: As a compromise between
the original and CGAL Hilbert orders, the entire point set is
split by its horizontal and vertical median, see Figure 2b. This
should distribute the points over all quadrants better than the
original Hilbert order, and remove the jump that was seen in
CGAL Hilbert.

b) Hilbert YX: The reason the jump occurs in CGAL
Hilbert is because the point set is split along the x-axis first,

http://www.win.tue.nl/~kbuchin/proj/wramdt/
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Fig. 4. A schematic representation of the BrioDC algorithm (adapted from [6]). Our implementations differ in the way they compute NNG.

and then along the y-axis, creating a discontinuity at the top.
By first splitting on the y-axis median and then on the two x-
axis medians, no jump occurs when going from one quadrant
to another, see Figure 2c.

c) Squarified Hilbert and Peano orders: If the smallest
enclosing bounding box of a point set has large aspect ratio,
fitting an space-filling curve will either leave part of the
domain unused, or stretch one axis. We prevent this from
happening by splitting the point set into subsets that have
a well-fitting square bounding box, and joining the space-
filling curves over these point sets. Depending on whether
the bounding box is wide or tall (relative to the orientation
of the space-filling curve) this is achieved by placing either
multiple curves next to each other, as in Figure 3a, or two
columns of multiple curves, as in Figure 3b. The bounding
box is recomputed for each subproblem, so the individual
subproblems may be split in a similar way. Squarifying can
also be combined with the adaptive orders.

3) Implementation: BRIO was implemented in C++ and
uses CGAL 3.6.1 to generate the Delaunay triangulation after
the rounds have been determined. We implemented our orders
as sorting operations. For the CGAL Hilbert order we use
hilbert_sort_2. We use CGAL to obtain a direct com-
parison between our orders and the CGAL Hilbert order. The
code of CGAL was only slightly modified to gather metrics.

B. BrioDC

BRIO determines the rounds in which the points are inserted
using independent probabilities. On the other hand, BrioDC
uses a series of nearest-neighbor graphs to determine the
rounds. As with BRIO we construct the rounds backwards,
starting with the final round. Let NNG≤r be the nearest-
neighbor graph of all points that are added in rounds 1 to
r. We then determine which points will be inserted in round
r as follows. First, we identify all the connected components
in the nearest-neighbor graph. For each connected component
we make sure that at least one point is inserted before round
r by picking either the first or second point at random. The
other point will be added in round r. For all subsequent points
we add them to round r with independent probability 1/2.
We know that for each connected component in NNG≤r, at
least one point is inserted in an earlier round. This process is
repeated for each round until the point set is of constant size,
for which we generate the Delaunay triangulation directly. This

BRIODC(P )

1 If |P | = O(1), then compute DT(P ) directly and return
2 Compute NNG(P ), the nearest-neighbor graph for P
3 Let P ′ ⊂ P be a random sample such that

(i) P ′ meets every connected component of NNG(P )
(ii) Pr[p ∈ P ′] = 1/2 for all p ∈ P

4 Call BRIODC(P ′) to compute DT(P ).
5 Compute DT(P ) by inserting the points of P\P ′

into DT(P ), using NNG(P ) as a guide.

Algorithm 1: The BrioDC algorithm as given by Buchin and
Mulzer [6].

process is given as a recursive procedure in Algorithm 1 and
as a schematic representation in Figure 4.

For each round r we insert the points using NNG≤r as a
guide. We traverse NNG≤r breadth first, starting at all points
pi that were inserted in an earlier round. If we follow an edge
from p to q where p is already in the Delaunay triangulation,
and q is not, we insert q using p as a guiding vertex. We
do this by walking from point p to the triangle in which q
lies and start updating the Delaunay triangulation from there.
Alternatively, since NNG≤r is a subset of DT≤r, we could
remove all triangles intersecting the line segment pq and start
fixing the Delaunay triangulation from there.

1) Variations: The running time of BRIODC is determined
by the time spent in the generation of the nearest-neighbor
graph [6]. Therefore, we look into two different algorithms
that compute this.

a) Linear-time algorithm: To find the nearest-neighbor
graph of a point set, we use a series of intermediate data
structures as illustrated in Figure 5. From the point set we
generate a compressed quadtree, from which we compose a
well-separated pair decomposition (WSPD) that is used to
compute the nearest-neighbor graph. Obviously, for a linear-
time algorithm, each step can take at most linear time.

For the compressed quadtree we use the approach of Chan
[8], that builds the compressed quadtree bottom-up. We first
sort all points along a z-order space-filling curve [20]. We
only need information on the most significant bit in which the
z-index of two consecutive points differ, to determine the size
and position of the quadtree box. Constructing the compressed
quadtree in this way takes linear time, plus the time needed



for sorting the points. For integer points this also takes linear
time using radix sort. We implement radix sort using lookup
tables for the coordinates, as described by Schrijvers [23].

We compute the well-separated pair decomposition from the
compressed quadtree as described by Callahan and Koseraju
[7]. This algorithm takes linear time in the number of elements
in the quadtree, and as we use a compressed quadtree, this is
linear in the number of points. We actually do not need all the
well-separated pair decomposition pairs, as we will discuss in
the following paragraph. To reduce the required storage, we
only save pairs where at least one element is a singleton. This
way we reduce the required storage of the well-separated pair
decomposition by a factor of approximately 30.

Finally, we follow the approach of Callahan and Koseraju
[7] to compute the nearest-neighbor graph from the well-
separated pair decomposition. This approach is based on the
observation that the nearest neighbor of a point p must appear
in the point set B for a pair (p,B) in the well-separated pair
decomposition. Additionally, when looking at B, there can
only be a constant k (based on the bounding circle of B) of
points pi, for which their potential nearest neighbor is in B.
If there are too many points around B, they will be closer
to each other than to points in B, hence no points from B
can be a nearest-neighbor. We can maintain this information
efficiently by using the quadtree for hierarchical information.
Since the number of potential nearest neighbors that we need
to maintain is bounded by the constant k and the size of the
quadtree and well-separated pair decomposition is linear, this
can be maintained in linear time. The final step is to determine
which of the k potential nearest neighbors is closest, which
can also be done in total linear time. So for integer points,
we can compute the nearest-neighbor graph and identify all
connected components in linear time.

b) O(n logU)-time algorithm: While all the algorithms
in the previous subsection take linear time, some parts involve
a large constant. We also implemented the following asymp-
totically inferior algorithms with lower constants.

For the generation of the compressed quadtree, we can
simply first build the regular quadtree, using a standard in-
cremental algorithm. The running time per point is dependent
on the maximum depth of the quadtree, which is logU . There
are examples where every point takes as much time, so size
and running time of the quadtree is O(n logU). Computing
the compressed quadtree takes O(n logU) after which its size
is linear.

For computing the nearest-neighbor graph from the well-
separated pair decomposition, we can also check for every pair
(p,B), which point in B is closest to p. This takes O(n(log n+
logU)) [14]. Since log n is bounded by logU , this can be
simplified to O(n logU).

2) Implementation: We have implemented the BrioDC al-
gorithm in C++. For the base case of the Delaunay trian-
gulation and for the incremental insertion of points into the
triangulation we use the Triangle library5 [24] version 1.6.

5http://www.cs.cmu.edu/∼quake/triangle.html

Triangle gives the option to supply a guiding vertex when
inserting a new point. We use the guiding point q from the
nearest-neighbor graph and walk to the triangle containing
the new point p. While it may be more efficient to first
remove any triangles intersecting the line segment pq, we used
walking so we do not have to modify Triangle. Other than the
modifications to gather the measurements, we have made no
changes to the library.

III. EXPERIMENTAL SETUP

In this section we discuss the experimental setup. We start
by discussing the different data distributions we have used and
we conclude this section with a description of the metrics that
we have collected. All code was written in C++ and compiled
using GCC with the -O3 optimization flag. The experiments
were performed on a 64-bit 16 core Intel Xeon L5520 server
running Linux (2.6.35) operating system with 11.7 gigabytes
of RAM.

A. Distributions

When generating point sets on an integer domain, there is
a possibility of two points being mapped to the same coor-
dinates. When this occurs we record the event and generate
a new point according to the chosen distribution. For each
dataset we generate point sets of size n = 210 to 222 in powers
of 2. The domain is [0, U) × [0, U) where U = 28 · n. For
each distribution and n we run 10 tests on different datasets
and report the average of the results.

We tested the following point distributions (Figure 6).
a) Uniform and Checkers: We have tested uniformly

distributed point sets in a square domain (Figure 6a). A
variation on this is the checkers distribution where 1/8 of
the points are distributed uniformly on white squares and
7/8 of the points are distributed uniformly on black squares
(Figure 6b).

b) Normal: We take both the x and y coordinate in-
dependently from a normal distribution (Figure 6c). For this
we use the Box-Muller transform as described in “Numerical
Recipes in C” [22]. We rescale the point set by 50 standard
deviations, which did not result in points that were discarded
due to rescaling.

c) Kuzmin: Blelloch et al. [3] describe the Kuzmin
distribution as a radially symmetric distribution with high
density center. In Figure 6d we show the center of the domain.
For each point the radius r is determined by picking a uniform
random variable x ∈ [0, 1) and solving x = 1 − 1√

1−r2 ; the
angle is taken uniformly at random in [0, 2π) radians. We
rescale the dataset by U/2500. This means that on average we
discard 5-10 points because they fall outside the domain. The
number of points discarded because they are mapped to the
same integer coordinate scales linearly with n: approximately
1 in every 212 points is rejected.

d) Line: Blelloch et al. [3] define a line singularity to
give an example of a distribution that has a convergence area.
Most of the points appear on the same line segment, with a few
points appearing to the right of it (Figure 6e). It is obtained by

http://www.cs.cmu.edu/~quake/triangle.html


quadtree(P ) WSPD(P) NNG(P)P

Fig. 5. A schematic representation of the data structures used to compute NNG: a (compressed) quadtree and a well-separated pair decomposition. Every
well-separated pair is represented by a pair of circles connected by an edge.

(a) uniform (b) checkers (c) normal (d) Kuzmin

(e) line (f) worst-case (g) lidar

Fig. 6. Our different point set distributions. For the normal and Kuzmin distributions we show the center of the domain, otherwise all points would appear
as a single point. The lidar data shown is a subsample.

taking two independent random variables u and v in the range
[0, 1] and applying the transformation (x, y) =

(
b

u−bu+b , v
)

,
with b = 0.001.

e) Worst-case Hilbert: Buchin [5] describes a worst-case
input for BRIO using a Hilbert curve. The basic building block
is a set of points on a line of slope -1 with exponentially de-
creasing distances. For small integer coordinates several copies
of this building block are used to achieve the Ω(n logU) worst
case. For each building block, we use U = 225 and 32 × 32
copies. A 4× 4 example is given in Figure 6f.

f) LIDAR: Delaunay triangulations are often used for ter-
rain modelling. We have used the LIDAR data set ‘Yosmemite
National Park, CA: Rockfall Studies (CA10 Zimmer)’6 pro-

6LiDAR data acquisition and processing completed by the National Center
for Airborne Laser Mapping (NCALM – http:\www.ncalm.org). NCALM
funding provided by NSF’s Division of Earth Sciences, Instrumentation and
Facilities Program. EAR-1043051. Data set provided by the OpenTopography
Facility with support from the National Science Foundation under NSF Award
Numbers 0930731 & 0930643.

jected onto the xy-plane (z denotes height) and restricted to
the range from (272751.755, 4179980.625) to (273651.446,
4180814.474). The data set contains 4,060,441 points after
removing duplicate (x, y) values.

B. Measurements

The largest factor in the practicality of an algorithm is its
running time. The non-linear worst-case running time in RICs
and BRIO is due to the time needed for point location. Since
all incremental algorithms that we compare use walking for
point location, i.e., they find the new point by traversing the
triangulation, we measure the point location cost by counting
the number of simplices walked.

Measurements that we took but do not report on further are
tour length and the number of in-circle tests. The tour length
is the length of the tour through the points in the order given
by the BRIO. For BrioDC we took the sum of lengths of
the relevant edges of nearest-neighbor graphs. However, tour
length in our experiments was proportional to the number of

http:\www.ncalm.org


simplices walked. The number of in-circle tests corresponds
to the cost of updating the triangulation. This number varied
only little over the various insertion orders.

IV. RESULTS

We first compare BRIOs with each other. Since they basi-
cally fall into two groups in terms of running time, we take
a few representative BRIOs and then only compare those in
terms of their running time with BrioDC and other algorithms.

A. Comparison between BRIOs

We first compare the various insertion orders for incre-
mental constructions con BRIO using the average simplices
walked per point and the average running time per point in
microseconds for n = 222. For both types of measurements
the squarified orders and the original space-filling curve orders
consistently perform better than the other orders. Only for
the worst-case point set the original space-filling curve orders
perform considerably worse. For the random distributions the
performance of the BRIOs varied only little except for the
line distribution which we will discuss separately. For the
other random distributions we use the normal distribution as
a representative, and all numbers in the text refer to this
distribution if not stated otherwise.

In terms of the average number of simplices walked, the
Squarified Hilbert order performs best. More specifically, the
squarified orders (Squarified Hilbert: 3.54, Squarified Peano:
3.65) enforce a walk with fewer simplices than the correspond-
ing original orders (Hilbert: 3.62, Peano: 3.66). Sierpiński
(3.56) performs worse than Squarified Hilbert. The squari-
fied adaptive orders walk slightly more simplices (Squarified
Adaptive Hilbert: 3.66, Squarified Adaptive Peano: 3.75).
The remaining orders walk about 10-20% more simplices
(Adaptive Hilbert: 4.16, Adaptive Peano: 4.30, HilbertYX:
4.39, CGAL Hilbert: 4.26). Table I shows how the average
number of simplices walked changes for n = 215, . . . , 222.
While the original space-filling curve orders and squarified
(and adaptive squarified) orders show little dependency on the
distribution, the number of simplices walked degenerates for
the line distribution for the adaptive orders (Adaptive Hilbert:
24.46, Adaptive Peano: 31.59, HilbertYX: 26.74, CGAL
Hilbert: 25.54). Interestingly, for adaptive and CGAL orders
this number increases with n, while for the squarified and
original space-filling curve orders it does not. As comparison,
the table also shows the number of triangles walked in the
BrioDC algorithm, i.e., starting at the nearest neighbor. This
is approximately 25% less than the squarified and original
orders.

In terms of the running time, the squarified and original
Hilbert orders perform best. In general, the squarified orders
(Squarified Hilbert: 1.10 µs, Squarified Peano: 1.11 µs) are
slightly slower than the original orders (Hilbert: 1.06 µs,
Peano: 1.10 µs, Sierpiński: 1.07 µs). This can be mostly
attributed to the higher construction time, but also the average
number of conflicts increases slightly (e.g., Hilbert: 4.15 and
squarified Hilbert: 4.16). Most remaining orders are slower

TABLE I
AVERAGE NUMBER OF SIMPLICES WALKED PER ALGORITHM FOR

NORMALLY DISTRIBUTED POINT SETS OF DIFFERENT SIZE FOR CGAL
HILBERT (CGALHIL), ADAPTIVE HILBERT (ADHIL), ADAPTIVE

SQUARIFIED HILBERT (ADSQHIL), ORIGINAL HILBERT (HILBERT),
SQUARIFIED HILBERT (SQHIL) AND BRIODC.

Input Size CGALHil AdHil AdSqHil Hilbert SqHil BrioDC

215 4.18 4.08 3.68 3.63 3.55 2.73
216 4.19 4.10 3.67 3.63 3.55 2.73
217 4.20 4.10 3.67 3.62 3.54 2.73
218 4.22 4.12 3.67 3.62 3.54 2.73
219 4.23 4.13 3.67 3.62 3.54 2.73
220 4.24 4.14 3.66 3.62 3.54 2.72
221 4.25 4.15 3.66 3.62 3.54 2.72
222 4.26 4.16 3.66 3.62 3.54 2.72

by 6-26% (Adaptive Hilbert: 1.27 µs, Adaptive Peano: 1.33
µs, HilbertYX: 1.21 µs, CGAL Hilbert: 1.18 µs, Squarified
Adaptive Hilbert: 1.29 µs, Squarified Adaptive Peano: 1.34
µs), and this factor is about 75-230% for the line distribution.
For the worst-case point set the Squarified Hilbert (1.20 µs)
and the Squarified Peano (1.27 µs) are about 30% faster than
the corresponding original orders (Hilbert: 1.53 µs, Peano:
1.52 µs). But the Sierpiński order remains fast (1.26 µs).

The fact that we were not able to construct a large point
set for the worst-case Hilbert distribution leads us to an
interesting observation. The worst-case construction of the
Hilbert curve requires a point set for which point-to-point
distances exponentially vary (in the size of the point set). The
minimal and maximal distance between any two distinct points
is limited by the precision of the number representation. In
our case, since we use points from the 32-bit integer domain,
we can only use about 30 points. In fact, for our particular
construction we take points from 225 × 225, leading to 28
points per construction. This severely reduces the size of the
worst-case point set, thereby preventing the Ω(n logU) to be
a problem in a practical sense. For points with floating point
precision, we can construct a point set of roughly the size of
the difference in maximum and minimum exponent. According
to the IEEE 754 standard [1], for single precision this leads to
around 256 points while for double precision we get around
2048. For point with floating point coordinates the running
time is in Ω(n2) [5], but n ≤ 2048. This leaves the interesting
question if we can find a distribution for which a construction
in Hilbert order yields a Ω(n2) algorithm, while not bounding
the number of points in the distribution.

B. Comparison with existing algorithms

We now compare our BrioDC algorithms with existing ones.
The BRIO orders fall into two categories and the orders within
the same category have similar running time. Therefore, from
the original and squarified orders we will only show Squarified
Hilbert and from the adaptive orders we will only show CGAL
Hilbert. Figure 7 shows the running time per point of the
algorithms for the line distribution on a log-log-scale and
Figure 8 shows a lin-lin scale. Table II shows the running
times for the different distributions of size 220, 221 and 222.
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0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ti
m

e
 in

 m
ic

ro
se

co
n

d
s 

Input size n Millions 

BrioDC (linear) BrioDC (n log U) Triangle Inc.

Triangle D&C CGAL Hilbert Hilbert
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algorithms.

Furthermore, it shows the running times for the two additional
point sets: worst-case and lidar. For all algorithms based on
con BRIO (including BrioDC) we would expect a constant, or
nearly constant running time per point. This seems indeed to
be the case, although the graph increases very slightly with the
input size. The near-linear O(n logU) time implementation of
BrioDC is faster than the linear-time implementation, but is
also growing faster. For 219 and more points, BrioDC is faster
than the incremental construction algorithm of Triangle. For
222 points BrioDC is only a factor 5.5-7 slower than the divide-
and-conquer algorithm of Triangle, and this factor decreases
with increasing number of points. The fastest algorithms in
our experiments are the algorithms using a BRIO. The Hilbert
order, the squarified Hilbert order and BrioDC show little
dependency on the input distribution. Triangle’s incremental
algorithm, HilbertYX and CGAL Hilbert show a large de-
pendency, and the divide-and-conquer algorithm considerably

TABLE II
THE RUNNING TIME PER POINT IN MICROSECONDS FOR BRIODC LINEAR

(DCLIN) AND O(n logU) (DCLOG), TRIANGLE INCREMENTAL (TR.
INC.) AND DIVIDE-AND-CONQUER (TR. D&C), CGAL HILBERT

(CGALHIL), SQUARIFIED HILBERT (SQHIL) AND HILBERT.

Input Size DCLin DCLog Tr. Inc. Tr. D&C CGALHil SqHil Hilbert

uniform
220 22.26 18.20 32.54 2.22 1.14 1.08 1.05
221 22.18 18.35 40.52 2.39 1.17 1.09 1.06
222 23.01 19.79 45.56 2.61 1.15 1.08 1.05

normal
220 20.99 18.46 30.64 2.23 1.13 1.06 1.03
221 22.14 19.33 39.74 2.43 1.17 1.08 1.05
222 22.77 20.15 55.23 2.73 1.18 1.10 1.06

Kuzmin
220 21.89 20.40 29.93 2.38 1.22 1.14 1.10
221 22.89 21.14 44.70 2.62 1.25 1.16 1.12
222 23.08 20.64 61.03 2.87 1.24 1.15 1.11

checkers
220 20.47 16.42 26.34 2.21 1.17 1.11 1.08
221 23.83 19.46 48.16 2.58 1.23 1.15 1.12
222 24.00 21.33 54.18 2.79 1.22 1.14 1.10
line
220 20.44 16.87 55.81 3.00 1.88 1.07 1.05
221 22.20 18.20 83.66 3.31 1.95 1.11 1.08
222 22.74 19.51 92.10 3.54 1.96 1.10 1.07

worst-case
28,674 8.77 11.01 6.21 1.71 1.22 1.20 1.53

lidar
4,060,440 19.73 14.20 6.18 2.05 1.28 1.18 1.17

slows down for the line distribution. For the worst-case input
the O(n logU)-BrioDC is slower than the linear one. This is
not surprising since the O(logU )-factor is related to the depth
of the quadtree used in the construction. This depth is large for
this point set. All other algorithms perform as expected for the
size of the point set, except for the previously discussed space-
filling curve orders. For the LIDAR data, O(n logU)-BrioDC
and Triangle’s incremental construction perform notably better
than for other distributions. This is likely due to locality in the
data set, which results from the LIDAR data capturing process.

To gain more insight in how to speed up BrioDC, we
analyze its running time in terms of the individual steps
(Figure 9). The cost is split into constructing the quadtree,
the well-separated pair decomposition (from the quadtree)
and the nearest-neighbor graph (from the well-separated pair
decomposition). Everything else including the sampling is
reported as Rest. For the contribution of the well-separated pair
decomposition and the nearest-neighbor graph computation
this time indeed seems to be close to constant. For the quadtree
and remaining calculations this time increases but this growth
stalls and seems bounded by a constant. We see that all three
steps considerably contribute to the running time.

V. DISCUSSION

We set out to find a practical worst-case optimal Delaunay
triangulation algorithm for points with coordinates from a
polynomially-bounded integer range. For this we have im-
plemented the BrioDC algorithm, which had only been of
theoretical interest so far. We have found that using the nearest-
neighbor graphs of each round in BrioDC, the number of
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Fig. 9. The running time per point for different parts of BrioDC.

simplices walked is reduced by more than 25% compared to
the fastest known space-filling curves we have tested. This
gives us an important target, since it implies that the running
time for point location can only be improved by 25%, hence
any additional computation time that is required to reduce the
point location time must only incur a very small overhead.

We compared the running time of our algorithm with
Triangle’s divide-and-conquer approach which is one of the
fastest O(n log n)-time algorithms for constructing Delaunay
triangulations. Other commonly used O(n log n)-time algo-
rithms come within a factor of 1.5 to 10 of this running
time [12]. With a factor of about 5.5-7 for point sets of size 222

BrioDC is competitive with these algorithms, and this factor
will decrease further with increasing input sizes. We have
determined that most time is spend on computing the nearest-
neighbor graphs through the intermediate data structures of the
compressed quadtree and well-separated pair decomposition
(so the total of “Quadtree”, “WSPD” and “NNG” in Figure 9).
It is an open problem whether or not it is possible to skip one
of the steps in computing the nearest-neighbor graph. We know
the data structures are equivalent, but can we e.g. compute the
nearest-neighbor graph directly from the Quadtree, skipping
the well-separated pair decomposition? Any progress in this
area would substantially improve our running time. From a
practical point of view it is also interesting to improve this
by using a parallel algorithm that could run on a coprocessor,
e.g. a GPU approach like the one by Garcia et al. [13] which
is publicly available7.

We have also compared our implementation against several
BRIO orders. One of the reasons that BrioDC uses the nearest-
neighbor graph, is because it is expected to reduce the total
simplices walked when compared to a space-filling curve.
Our experiments show that this is indeed the case. Since the
number of simplices walked is that between a point and it’s

7http://www.i3s.unice.fr/∼creative/KNN/

nearest neighbor, it is likely that one cannot do better in a
randomized setting. Therefore, we now have a concrete goal
for future BRIO approaches to try and reduce this gap, while
limiting other computations to not exceed the 25% mark.

Finally, we found that while there exists a Ω(n2) bound
on Delaunay triangulation constructions using a Hilbert order,
in practice the construction imposes an upper bound of n =
O(log Φ), where Φ is the spread of the underlying number
format, i.e. the largest representable number divided by the
smallest representable number. It remains an open question if
a construction exists that does not bound n in this way.

We have given the first implementation of a O(n)-time
algorithm for computing the Delaunay triangulation of points
with bounded integer coordinates. While currently BrioDC is
still outperformed by O(n log n)-time algorithms, this would
change with a faster nearest-neighbor graph algorithm. While
resorting to a parallel algorithm would achieve this, computing
the nearest-neighbor graph fast sequentially (without using the
Delaunay triangulation) remains an open problem.
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